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1. Agent Decision Making in Dynamic Complex Context:
Marketing in the Open Internet Ecosystem
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Agent Decision Making in Dynamic Complex Context:
Marketing in the Open Internet Ecosystem
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2. Digital Life: Customer Lifecycle Marketing on the Internet



= Who

= What & Why

Customer Lifecycle Marketing on the Internet(1)

Lifecycle Marketing Model

« Different customers with different needs
in different periods of lifetime

v' Behavioral economics, demographics

CONVERI ENGAGE

REACH ACT

v Aesthetic fatigue, behavior psychology §
= Where & When n BHE
« User’s context: Customer activity, Precise A § £lal § HE
delivery time, Scene orientation HHHHH UG
v' Partial observed or Unobserved " BumBE BU .
v Uncertain, dynamic and multi-dimensional ~ [HHEU% M.

v Immediate and precision decision making
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* Products or service: Keep simple towards
complex business flow

+ o« ¥ Scale, Customer Lifetime Value(CLTV) 5 o (@ ey (@ rsignnh (@ novar) (@ uspea) (@
over the user’s trajectory), Service Rate, & 2l S Loyl e TP .
I — ”
|

Learning ,

fficiency, etc. 5w Learning | Learning;  Learning ; Learning ;
v Freq uency, Duration/stickiness: | ol i i P ! !
Jp|| t/CT /CVR et . . - Xt mim e Y it m m e E m mmm — — .- =)

A complete behavioral paths in Ant marketing ecosystem

v' Resources turnover cycle, Asset Utilization,
Revenues: ROI (Return On Investments),

GMV,AUM



Customer Lifecycle Marketing on the Internet(2)

= How

« Business flow: Promote activity,
Frequency period, Time decay,
Superposition/Mutual exclusion

 Channel to touch targeted users

v Push matching: Messages, SMSs,
Phone calls etc.

= How much

« User benefits: Coupons, Cash back,
Red packet, Discounted rate etc.

 Budget Constraint/Limit: macro
control and micro optimization

v Overall budget constraints, Maximum
Capital Limit etc.

Who
T

What When

Agent Decision

Whyk\\\ Making
/

"

How

Static vs Dynamic

How Much
Fully

VS —
Partially Observable
What action
Perfect next?
VS

Environment
(User context)

Noisy
Percepts Actions

Agent

ISR Z)
ANT GROUP

Where

Deterministic
VS
Stochastic

Instantaneous
VS
Durative
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Customer Lifetime Value(CLTV) Modeling(1)

= Reinforcement Learning(RL) VS Supervised Learning  Reinforcement Learning
SuperVised Learning(SL) ; o Desired X | Training Info: Evaluation
_ _ _ raining Info: Desired target Output | :
» RL learning from interactions: Agent | (rewards/penalties)
learns a policy mapping states to l : l
aCt|OnS InpUt . Output:lnput . OUtpUt:aCtiOnS
v Impractical to obtain examples of ,| Supervised . | ,| Reinforcement |
desired behavior that are both correct Learning | Learning
and representative of all the | | ——
situations Error: | Objective:
_ (target output — actural output) | Get as much reward as possible
v Trade-off between exploration and o . .
exploitation Supervised Learning vs Reinforcement Learning

v Delayed reward
v’ Learn from its own experience 4[ Env:ro?wn;::)t State }

« SL learning from examples Action(Respo

i State(Stimulus, Reward(
v Provided by a knowledgeable external Sﬁuz(tior'{j"eﬂc‘f)s Gain, Payoff, | nse, Control,
Su pervisor Cost. etc.) What atc:;|0n etc.)
next:

@

Agent




ISR Z)
ANT GROUP

CLTV Modeling(2): Through Agent Decision Making Based on RL

= RL seems to provide a very promising solution framework

» Interactive and sequence decision learning: Interactive
behavior sequences
* A general end-to-end decision-making framework

v Explicitly considers the whole problem of a goal-directed agent
interacting with an uncertain environment

v'Seeking to maximize its cumulative reward in the long run
v Multi-objective decision making
v A unified, automatic and real-time intelligent decision making

= RL with deep learning or DRL

« Apply deep learning to RL

v'Use deep neural network approximation to opt value
function/policy/model end-to-end
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CLTV Modeling(3): Through Agent Decision Making Based on RL

= [s it possible for an ensemble modeling = Multi-armed Bandit, Context Bandit, Full

framework adaptive to different RL Problem
business time-scales?
{ action }4{ reward }
e c;;/o DO”O”"”Q -------- 0‘2‘/0 Donothlng state }—'E action }4{ reward }
T e ‘06/20 e !

Re ,':’ ------ \ 0.3/-5 \\\ 0.8/50 \

03-2

‘ 0.7/-27 ‘07/-100
/’ Spec:al offer Club membershlp ’é‘ State J [ action }_ _______ '{ reward }

o First time/ ,' Repeated purchase Loyal customer 1
< not frequent customer ,
- ) ,/’ ® Policy 1 CTR — Total # of Clicks « 100
B 6'1 ;2;) Legend Probability/expected ® (CTR=0.5 Total # of Visits
@ O R —— > e mm—mmmm—m i —— - - Total # of Visitors '
Policy 2
Action
State ® O 0 00 c1rR=6/17-0.35
Customer Dynamics Modeling Using an MDP o0 0 LTV=6/4=1.5

o0 00O 0—>‘ ®
O ® O - Touch Click

LTV is potentially a better metric than CTR!']

[1]Personalized Ad Recommendation Systems for Life-Time Value Optimization with
Guarantees, IJCAI, 2015
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CLTV RL: Algorithm Design(1)

| COnteXt Touch Click Sign
« Customer life cycle marketing,
essential to customer life value

 Most active users are loyal and the
rest are hard-to-convert users

= Goal

» Through different marketing
activities to touch users repeatedly
and change marketing strategy

according to users’ behavior _ _ _
feed baCk - The possible behavioral paths in Ant marketing ecosystem.

Each such path consists of the chronological sequence of a
user’s interactions with different channel.

= RL model design Touch  Click

« Repeated touch sequences for
reinforcing decision, each marketing
activity as an eplsode N days for
delivery cycle

é H_ —_time

User 1

‘ Jfime

Jime

------------------------

Customer Journey

\

Gt = Reyq + YRi42 += 2 Vth+k+1
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CLTV RL: Algorithm Design(2)

RL model design = Here:
» Actor-critic Deep RL » AC : Actor-Critic
V.I(0) = E. V.l Q)ATe(s, « Use Q to reduce variance
0] (6) = Exy[Vologry (s, a)A™ (s, a)] » Actor aims at improving E)olicy
v Here, (adaptive search element)
. %:réltic Evalua_tt_es tlhe curtr)ent policy
Tg — (O7To __ YTy adaptive Critic eiemen
AT (s, a)] = Q(s,a) =V (s, a) » Learning is based on the TD error t
State « Reward only known to the critic
. « Critic should improve as well
« Feature embedding through DL
models = A2C
Action - Advantage Actor-Critic
. Compounded decisions = A3CL

« Asynchronous Advantage Actor-Ciritic

. . « Efficient/Independent trainin
- Combined multiples goals through cient/Indep J

oward function ana %unlng . Feéeﬁgssnce replay, parallel actor-critic

« Discrete or continuous contexts

Reward

[1] Asynchronous Methods for Deep Reinforcement Learning, ICML, 2016



= Q-function

Qt+1(51- ai) — gt(st-at) + ?'!(S!-a'!z X

old wvalue

» AC and A2C

VolJ(0) =E,,

—

« Here, K-Step advantages:

Vo
Vo

CLTV RL: Algorithm Design(3)

high values =

high values =
pleasant anticipation

pleasure
¢ learned value \L
i1 + R max Q¢(S¢41, @) — Q¢ (Se, ar)
S . S~ - @ P ~ -~ -’
learning rate reward discount factor estimate of optimal future value old value

low values =
pain

og me(s,a) Q (s, a)l
og me(s,a) A (s, a)]

~

low values =
fear

Q Actor-Critic
Advantage Actor-Critic

k—1
A(stae) = V' Riqi + YV (se4k) — V(st)

— x— 1

Reward
obtained

Estimate Baseline

@ future
time step

return
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Output Layer
P

Hidden Layer

-

o

Value Loss
L=Y(R-V(s))*

‘ |Update Learning loop

o

Critic-Value Network
V(s;;0,)-linear

J

T

.

L

CLTV RL: Algorithm Design(4)

Policy Loss
=-log(n(s))*A(s)-p = H(m)

~

J

(Control) action a;

‘ \Update

-

Actor-Policy Network
(a.|se; 0)-softmax

~

TD error

.

)
Baseline function

~

V(s)

J

i Advantage Function Estimation

~N

A=R - V(s)

I

-

-

Policy/Value Hidden Layer

- E&E

Control loop

Embedding Layer |

-

State Embedding Layer

Current s; '
Agent

St I lat
Environment

Lo

!

Experiences
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CLTV RL: Algorithm Implementation(1)
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Context-aware
policy and value
network

E&E

Environment

Experiences

Ay a a 4 ~
0 a; aAr_1 i | B
St L SO T'O Sl } rl L ST—l } r’]"—l L ST }r’[' i {(St, at ) rt), t—O,...T}
N Y,
. Experiences
a Environment
t Ao a4 aAr—1 ar : A
S L 50 1o S1 } (& . L ST—1 } TT_1£ ST }rT | {(St' At ’rt)l t=OIT}
t 5 )
Environment Experiences
. a a T—1 ar g A
0 1 - -
N Y,

Delayed reward sequence decision

Asynchronous update

{ Batching }




CLTV RL: Algorithm Implementation(2)

Global Network
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(Control) action a;

‘ Control loop J

Inference

— Agent é

T

Evaluation

T

E&E

Policy m(s
Aw, Awy, value V(s) - y m(s) ) AW, AWy
| i
WT[IWV
W, Wy Hidden
Network
|
I Embedding v
o Thread,
Aw ,Awy, W, Wy AW, Awy Wn,Wy
Local Network Local Network
T R T | T <
Woker, Woker,

Leaqners

S; [ lat

Environment

L=

l

Experiences

/

-

{(s¢,a,,r), t=0,..T}

\
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CLTV RL:Experimental Design for ABTest(1)

= The problem was formulated as a classification problem
» Sign and click object and separately build two models

« Given an user, the models predict the action that can make the user sign or click with max
probability

= Performance among DRL, MTL methods and single DNN method were compared ,
especially for DRL with multi-task/multi-View/multi-Object supervised learning

« Tensor Factorization for MTL through tensor trace norm!il and Cross-Stitch MTL!2] methods
were choosed

N

. Tensor Trace Norm MTL (Tensor Trace Norm) Tucker ||[W||. = Z%HW@H*
N—1

 Cross Stich MTL (Tensor Trace Norm) TT || W||. = Z%HWMH*

2—1

(Tensor Trace Norm) Last Axis Flattening || W||.. = v||[Wu)||+

—

‘rr }II( M J\)N

—_— —_— —_—
b}
l \ / (o] / j J
g & Nea Cross-stitch K2 Q] &
7 ‘ o = _\ units 7'\ o \ o]
=
- ., 2
=

* Using cross-stitch units to stitch two AlexNet networks

q JIompN

[1] Trace Norm Regularised Deep Multi-Task Learning, ICLR, 2017
[2Cross-stitch networks for multi-task learning[C], CVPR, 2016



CLTV RL:Experimental Design for ABTest(2)

= DRL model settings
e Discount factor = 0.99
« The policy network is a classification
network with 3 hidden layers:

v The number of each layer:
[256,256,256]

v Activation function: tanh
v Learning rate: 0.00025
v Loss function: cross-entropy

 The value networks is a regression
network with 3 hidden layers:

v The number of each layer:
[256,256,256]

v Activation function: tanh
v Learning rate: 0.00025
v Loss function: squared difference

D34S

JEi

ANTG

Model Servers

TModeI Serving

Linear Value Logits
(Value Net)

Softmax Action Probs
(Policy Net)

a1’

}

Hidden2

!

Hiddenl

A A

ROUP

TN

User Feature

Event Emmbeding

Time Sequence
Emmbeding

Time Since
Last Event

History
Response
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CLTV RL:Experimental Design for ABTest(3)

Trace norm MTL(Fig.1)
 Loss=L1(X1,Y1)+L2(X2,Y2)+Loss trace norm(W)

 Loss trace norm: The multitask regularization term with

tensor trace norm constraint (LAF, Tucker, TT)
* The weight of trace norm term: 0.0005

Cross Stitch MTL(F1g.2)
 Loss =L1(X1,Y1)+ L2(X2,Y2)
* The cross-stitch unit 1s used to learning task relationship

Model setting

* Left network learns the sign model and the right network |

learns the click model
 XI, X2: User’s feature (880).
* Y1, Y2: The labels of different users (6).
* W: The parameters of the two networks.
* L1: The cross-entropy loss function of the sign model.
* L2:The cross-entropy loss function of the click model.
* The number of each layer: [125,125,125]
* Activation function: sigmoid
* Learning rate: 0.001
e Batch size: 100

, o1

Sign Click ﬂ#ﬂ ﬂ#ﬂ
{ Output } Loss_trace_norm

Layér3 LaYer3

Fwis. L Fow 23— w13, w2311,
Lay'er2 ‘ r Layer2 : +

t w12 L w22 — [[w_12,W_22]|.
Lay'erl ‘ r Layerl | +

1 VEtH k oW 2l —» [I[W.11,W 21]]l.
Input Input |

Fig. 1 Trace Norm MTL

Fig. 2 Cross Stitch MTL
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CLTV RL:Experimental Design for ABTest(4)

= Comparison DRL with MTL with BPI(Business Perfor

m convRatelift avgHitConvCost avgAllConvCost

ance Index)

MTL-TN-TT -10.53% 3.80 4.15 Li fty () = ComRete(C)— ComuRate()
MTL-TN-Tucker -15.84% 3.96 4.15 S A= Del le=nlol
MTL-TN-LAF -18.26% 3.92 4.15 ; :g i |_m;)f& ! { ‘)’( )jmal_ofm(s)}
MTL-CS-125 -18.34% 3.72 4.15 C|>Bl, <1
MTL-CS-256 -20.55% 3.92 4.15
MTL-CS-525 -19.10% 3.99 4.15
* It shows that the performance DRL method better than this two type of MTL
methods

* For our other related work, please refer to the following papers:
1] Reinforcement Learning for Uplift Modellng, arxiv:1811.10158, 2018(Cooperated with Prof Xiaotie Deng)

2] Latent Dirichlet Allocation for Internet Price War, AAAI, 2019 (Cooperated with Prof Xiaotie Deng)
3] Cost-Effective Incentive Allocation via Structured Counterfactual Inference, AAAI, 2020 (Cooperated with Prof Michael I. Jordan, Le Song)
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3. Green Al: Cloud Resource Scheduling Management
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Cloud Resource Scheduling Management (CRSM)

= Background = Problem

app_idx 10  Low Computing resource utilization

- « Great variations of the CPU
— u_util utilization at different times

— « Huge differences among different
apps and zones
_®- = Goal

3 « Automatic allocation(scaling or

B shrinking) of machines to each _aRp
and zone with CPU utilization hig
enough but stable

* More flexible cloud services and user
configuration policies

i , | , , , | « Intelligent procurement strategy,
0 2 P 0 Y 100 120 carbon neutral

time (10 min)
» Benchmarks

« Amazon EC2l, Google cloud
autopilot!?!

10 -+

[1] https://docs.aws.amazon.com/autoscaling/index.html
[2]Autopilot: Work autoscaling at Google, EuroSys, 2020
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CRSM Modeling: Through Agent Decision Making Based on Meta-RL

= Challenges = Solutions: Meta model-based RL

 No resources changes ever occurred  Formulate individual app zone and its
online(No historical data) allocated resources with the business logic

- More than 30000 app zones and impossible into the dynamic model
to model each one individually * Uniformly model thousands of app zones

- Risky online assessment strategies with meta learning

e RL ?  Offline evaluation the accuracy of the

model

Action : Allocated resources
Reward target: CPU difference , remaining-
resources etc.

e e s s s s s S S e e o See S S
(=]

40 20 o 0 10 2 2
« Build thousands of tasks into
several large clusters
« model thousands of app zones with
meta learning uniformly
« Visualizing Data using t-SNEl!!

State: Current app zone resource utilization , traffic

Next state: CPU utilization after scaling or shrinking, traffic _ " o
« Traffic transition and CPU utilization fitting

[1] Visualizing Data using t-SNE, JMLR, 2008
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CRSM Meta-RL: Algorlthm Design(1)
= Model-based RL

- Few opportunities to interact with online Reward Reward,s| + [Reward, | + [Reward..]
and the interaction is high risk SR/ D0 7o U .
 Transitions and rewards are partially A g (£ @0 F] (g
defined by fixed lo fg ic, and the whole Y N L N/ Nl |
process can be differentiable : : g
o ] : Agent w(he—1,Z¢-1) m(h,,z,) w(hes1, Zes1) ,
- Environment model and CPU utilization S ™~ __ ~ K
updated by new policy can be partially
evaluated offline N AN \ &t
= RL model design T i 000 ) £, 1000 [£Gual0ucs)
- State: Predicted traffic information, CPU - I [ i iy
utilization, etc. LT C._._ T
S=(hl’t,predlcted_qps) inputs 2i,t—2,Ti,t—1  Zi,t—1,Ti,t Zijty Tit+1
- Reward: Difference between current CPU = Embedding layer(Deep autoregressive modellll)
utilization ratio and ideal utilization ratio, Rie=h (Rig1, 2 -1, ©)
penalty term, reward function: ’ ikelihood fact 1_[1 (2 £10 (hy, ©)
r(s,a) = _”Cputarget - Scpu”% +9 CPere : Hhood Tactor.
. Action: Allocation(scaling or shrinking) " CPU ULty CPUwc _ff_(qp_s’h““c“o_"_)
ratio = SLO(Service Level Objective)!2 Utility:

SLO = g,(qps, memory,action)

[1]A Spatial-Temporal Attention Approach for Traffic Prediction, T-ITS, 2021
[2]FIRM: An Intelligent Fine-Grained Resource Management Framework for SLO-Oriented
Microservices, 2020, OSDI
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CRSM Meta-RL: Algorithm Design(2)

= RL model design

« Transition: Fixed allocation rule; CPU utilization, decided by traffic and
transition learningli!;

S S
(S{“raf,scl:pu) — ( t;af»ANP( t?;ff)) = g(straf,a)

« Policy: A neutral network with input s and task embedding e;,,
a = 71(s,eqsx), Nere, task embedding is learned through attentive

neutral process(Maximizing the following evidence lower
bound(ELBO)!1]):
Maxg ¢ Eq(z|s7) [log pe (yrlx7, 7., 2) — Dy, (Clqb (Z‘ST)HCIqb (z]sc) )]

Policy trainingl2:3:4l: V(s,z) =r(s,a,z) + yV(g(s,mg(als, z), 2))
0 <06 +ﬁ%V(S,Z)
Training Loss: Min, Y. (CPU,;; — CPU;geq)? + A * SLO,

Attentive neural process, ICLR 2019

] Model Embedding Model-Based Reinforcement Learning, arxiv:2006.09234, 2020
Learning Continuous Control Policies by Stochastic Value Gradients, neurips, 2015
Dream to control: Learning behaviors by latent imagination, ICLR, 2019

W N =
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CRSM Meta-RL: Algorithm Design(3)

—————————————————————————————————————————————————————————————————————————————————————
- N\

/"Meta model-based RL

TR e oo T o Action : Allocated resources
' Encoder K Q Decoder ‘ i
g —_ & x i
i s . N i (" Learned dynamics )
5 ‘ e I ’
; / |
: — |
‘ e (. > —7 i

-— / Task embedding 'l: l‘\
:" Policy learning Traffic formulation | Model Performancel! .
" n(als,z) V(s,2) Dynamic model: g(s,a, z) N 7

15 1 >

Q

V(s,z) =r(s,a,z) +yV(g(s,n(als, 2), z))
WP I Embed dynamics in Bellman Equation 10 1

X i d ] | §

- ———————————— -

= after intervention

. Automatically filter apps that can
[1] A Meta Reinforcement Learning Approach for Predictive Autoscaling One model covers 1000 app zones be scaled according to model metric

in the Cloud, KDD, 2022

S i R R R
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4. Agent Based Reinforcement Learning(RL):
Algorithm Library, Dataflow Framework and System Platform
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Agent Based RL: Algorithm Library

Algorithms Library

Algorithm Models

Technique Problems

Complex Embedding Hyperbolic Embedding!i] HAN, HECO

Offline Training «

Sample Efficiency

Multi-Goal/Multi-Task

Hybrid actions *
Dynamic Updating Online Learning _

Contextual Bandit, Bandit

Overall Scheduling |  MutiagentRLOW vith Knapsack

Online DL/On-policy RL
[1] Unit Ball Model for Embedding Hierarchical Structures in the Complex Hyperbolic Space,

arxiv:2105.03966, 2021 (Cooperated with Prof Yangqiu Song) _

2] Model Embedding Model-Based Reinforcement Learning, arxiv:2006.09234, 2020
3] Variational Policy Propagation for Multi-agent Reinforcement Learning, arxiv:2004.08883, 2020
4] Value Propagation for Decentralized Networked Deep Multi-agent Reinforcement Learning, NeurlPS 2019




Agent Based RL: Dataflow Framework
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U t Modell,... N
App ———— ReCEE Ranker |
. . eatureli t i
Online Service S
User Behavior  Feature Log 1<s,a,r>
Online Clone Traffic e Model Meta Data
. : Validation
lsamp""g & Replica Lvlodel AUC, Dist ...
TT RecEng & Ranker’ PAI ‘
Mock U request
l Modell’,... N’ I
HBase Armor
Label Example Stream Training
> F|0WEng > TT — PS
Event FeaturelLib -
Batch
. . . Training L
1 Realtime Dataflow—— Uniform Embedding Stream Validation
» DataHub —— FOtDPLS.b
2 Realtime Modeling —— Streaming Algorithm Framework eaturets

3 Real-time Learning Evaluation - Streaming Learning Framework & Streaming Model Evaluation

4 Real-time Decision Making - Streaming Online Reinforcement Learning
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Agent Based RL: System Platform

Consumer : _ Resource
Life Cycle Modeling Equity Matching Scheduling

Applications

Transformer Attention

Game Theory Meta Learning

Multiagent

RLIib

Al Recognition Platform
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5. What’s ongoing & next
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Agent Decision Making: Agent Based RL Development Toolkit—Plutus

—

Plutus Interface . .
API/Packages/SDK/Module Custorm Algorithms Ray RLIib Algorithm

[

|

_ Agent(s) Replay Buffer +——— Sample Stream
Plutus Abstraction

—

_ Model Layer Env — Simulator
~ Evaluator Al Studio Inference & Ranking Service
Plutus Execution 3 AI Cognition Framework
RcaPYJ%SJS Flink/Alink Tensorcacfg/cg)rsasggDPS Table PAL




Agent Decision Making: One-step Service

D54 S

=

ANTG

R

FEERARSS L e e -
—IATERARSS i imiEREE ] — MBS EFRAN FREEEES
HSRE o N - O °
e X % @\ = d\}
N/
R F Xz | (00
H—2Z AR &Graph Embedding 33 BEEhZARAN KBRS Z BRRSR ZE5ES ZEReER =if—{K
RN H
HEEMAE (State) EREARSE (Action: SW+2H) HRe IR (Reward)
To-C/B/IE& 7=/ IR SSANE _ RXE{TA EIOES JRAY Bt | BT | BER | BRI | FE LTV ROI
MRER Z5P R | NEE BRSINMME | NeRERSE AEHTNEE | Bik... 15713 W RiE Cost RIS iR
= BpNE=
&t EasEIHA sR{LUplift SR EIBEER/ RIS ZE G C Azl E T B Hin/Z1E55/ ZE8eR Gl St RayRLIib
A3C RLift RL-PGM / RL-TimeSeq MetaRL/Multi-agents RL-Combined Control
GameTheory(NE, CE)
AI5|ZE . . . :
Simulator : Sim2Real(Interactive) Evaluator(Flow-based) Inference Service
+HE L i
IHETa Ray Flink PAI

7]
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Agent Decision Making: Inclusive & Green Al
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Q&A

I R RN SR HIBSER

Bring small and beautiful changes to the world

DingTalk: 725
Email: junwu.xjw@antgroup.com



