Deep Reinforcement Learning in Intelligent Finance

Xiong Jun Wu@Ant Group

2018.08.28

Outline

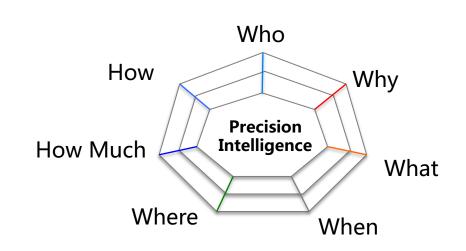
- Background
- DRL for intelligent finance decision making
 - Part 1: A practical example in credit consumer finance
 - DRL for ant credit intelligent finance marketing
 - Part 2: Recent work in DRL modeling
 - A policy gradient method for uplift modeling
- Ongoing and future work
- Q&A

Background

- Ant Financial' s ecosystem
 - Provides various financial products
 - Ant Credit: credit pay / consumption credit
 - Cash Now/ Small and Micro Business Loan: credit loan for personal/small business
 - •
 - Hundreds of millions users
 - Current users, potentials and inactive ones
 - How to target individual needs of users in the financial ecosystem?

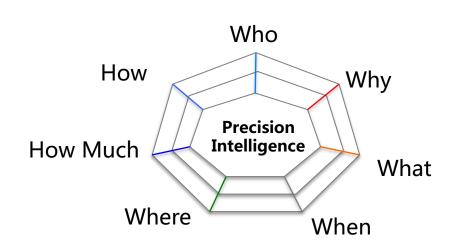
Main challenges for intelligent finance decision making

- Different customers with different needs(Who&Why)
 - Wealth status, demographics, behavioral economics
 - Different periods of their life
 - Aesthetic fatigue, behavioral psychology
- Financial products(What)
 - Simple function VS. business flow complexity
- User's environments(Where&When)
 - Partially observed or unknown
 - Random, multi-dimensional and dynamic
 - Immediate and intelligent decision making



Main challenges for intelligent finance decision making

- Diversified forms of benefits for users(How much)
 - Discounted rate/price, red pocket, coupon, cash back
- Marketing budget(How much)
 - ROI: macro control and micro optimization
- Channel for different consumer finance scenarios(How)
 - Customer activity and scene targeting
 - Channel matching:Message, SMS, phone etc.
- Marketing cycle(How)
 - Frequency period, time decay, superposition, mutual exclusion



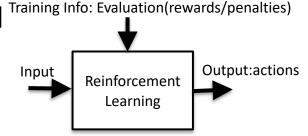
How to make intelligent decision in finance under complex and dynamic environment?

30

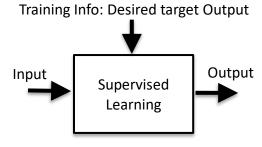
- Reinforcement Learning(RL) VS Supervised Learning(SL)
 - RL learning from interactions— Agent learns a policy mapping states to actions
 - Impractical to obtain examples of desired behavior that are both correct and representative of all the situations
 - Trade-off between exploration and exploitation
 - Delayed reward
 - Learn from its own experience
 - SL learning from examples
 - Provided by a knowledgeable external supervisor

Reinforcement Learning

Supervised Learning



Objective: Get as much reward as possible

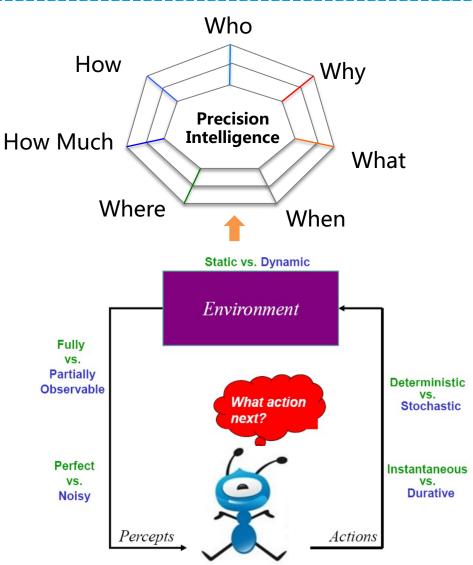


Error=(target output – actural output)

Reinforcement Learning VS Supervised Learning

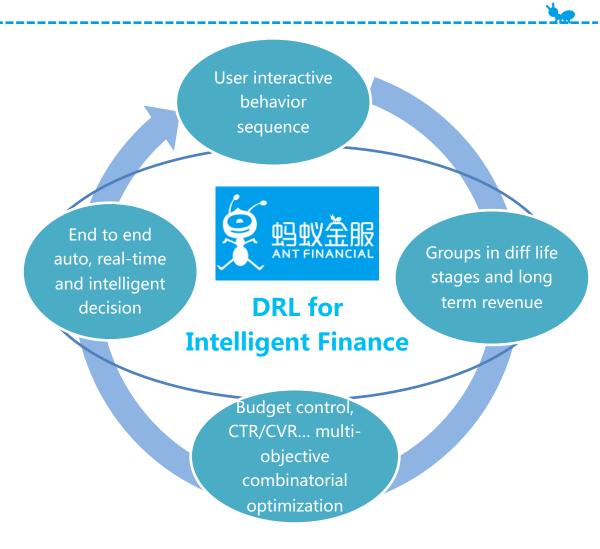
How to make intelligent decision in finance under complex and dynamic environment?

- RL seems to provide a very promising solution framework
 - A general purpose intelligent framework
 - Explicitly considers the whole problem of a goal-directed agent interacting with an uncertain environment
 - Seeking to maximize its cumulative reward in the long run
- RL with deep learning or DRL
 - Apply deep learning to RL
 - Use deep neural network approximation to opt value function/policy/model end-toend



DRL for intelligent finance decision making

- Interactive and sequence decision learning
 - Interactive behavior sequences
- Long term revenue
 - Financial business often targets longterm revenues
 - Different groups in different life stages
- Multi-objective decision making
 - Precise timing, scene orientation
 - Channel matching, different ways of reach, various benefits
 - CTR/CVR, ROI budget constraints etc.
- End-to-end decision
 - A unified, automatic and real-time intelligent decision-making service



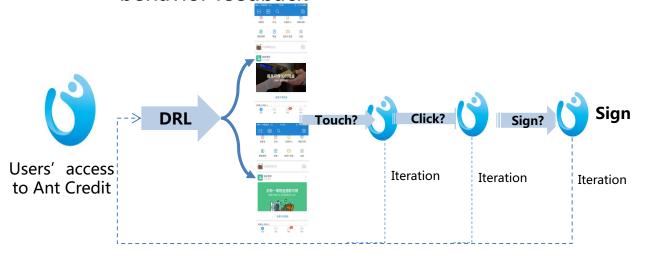
DRL for Ant Credit intelligent finance marketing

Context

- Start points of life cycle marketing
- Key factors of GMV and profits
- Most of the active users have converted, the others very difficult to convert

Goal

 Through different marketing activities repeatedly touch, change marketing strategy to reach sign target according to users' behavior feedback



DRL model design

 Repeated touch sequences for reinforcing decision, each marketing activity as a episode, N days for a delivery cycle

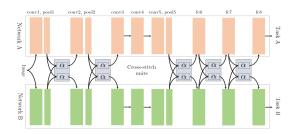
Actor-Critic Deep RL

$$abla_{ heta}J(heta)=\!\!\mathbb{E}_{\pi heta}[
abla_{ heta}log\pi_{ heta}(s,a)A^{\pi heta}(s,a)]$$
 here $A^{\pi heta}(s,a)=Q^{\pi heta}(s,a)-V^{\pi heta}(s)$

- State: features from multiple business
- Action: card x channel for compounded decisions
- Reward: combined click with signs etc.

DRL ABTest experiments design

- The problem was formulated as a classification problem
 - Sign and click object and separately build two models
 - Given an user, the models predict the action that can make the user sign or click with max probability
- Performance among DRL, MTL methods and single DNN method were compared, especially for DRL with multi-task/multi-View/multi-Object supervised learning
 - Tensor Factorization for MTL through tensor trace norm[1] and Cross-Stitch MTL[2] methods were choosed
 - Tensor Trace Norm MTL
 - Cross Stich MTL



(Tensor Trace Norm) Tucker
$$||\mathcal{W}||_* = \sum_{\substack{i=1 \ N-1}}^N \gamma_i ||\mathcal{W}_{(i)}||_*$$

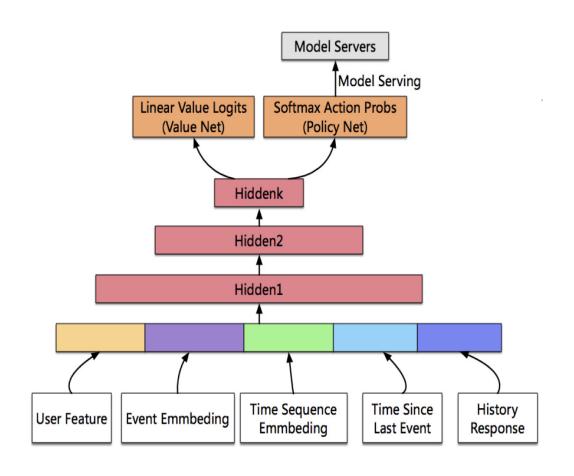
(Tensor Trace Norm) TT
$$||\mathcal{W}||_* = \sum_{i=1}^{N-1} \gamma_i ||\mathcal{W}_{[i]}||_*$$

(Tensor Trace Norm) Last Axis Flattening
$$||\mathcal{W}||_* = \gamma ||\mathcal{W}_{(N)}||_*$$

[1]Yang Y, Hospedales T M. Trace Norm Regularised Deep Multi-Task Learning[J]. 2017 ICLR [2] Misra I, Shrivastava A, Gupta A, et al. Cross-stitch networks for multi-task learning[C], CVPR 2016

DRL ABTest experiments design

- DRL model settings
 - Discount factor = 0.99
 - The policy network is a classification network with 3 hidden layers:
 - The number of each layer: [256,256,256]
 - Activation function: tanh
 - Learning rate: 0.00025
 - Loss function: cross-entropy
 - The value networks is a regression network with 3 hidden layers:
 - The number of each layer: [256,256,256]
 - Activation function: tanh
 - Learning rate: 0.00025
 - Loss function: squared difference



DRL ABTest experiments design

- Trace norm MTL(Fig.1)
 - $Loss=L1(X1,Y1)+L2(X2,Y2)+Loss_trace_norm(W)$
 - Loss_trace_norm: The multitask regularization term with tensor trace norm constraint (LAF, Tucker, TT)
 - The weight of trace norm term: 0.0005
- Cross Stitch MTL(Fig.2)
 - Loss = L1(X1, Y1) + L2(X2, Y2)
 - The cross-stitch unit is used to learning task relationship
- Model setting
 - Left network learns the sign model and the right network learns the click model
 - X1, X2: User's feature (880).
 - Y1, Y2: The labels of different users (6).
 - W: The parameters of the two networks.
 - L1: The cross-entropy loss function of the sign model.
 - L2: The cross-entropy loss function of the click model.
 - The number of each layer: [125,125,125]
 - Activation function: sigmoid
 - Learning rate: 0.001
 - Batch size: 100

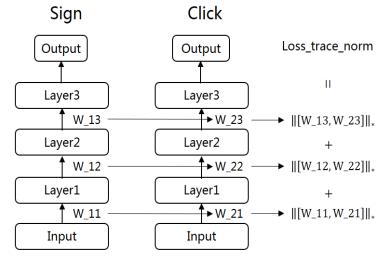


Fig. 1 Trace Norm MTL

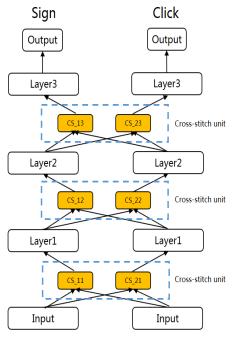


Fig. 2 Cross Stitch MTL

DRL performance evaluation

Comparison DRL with MTL with BPI(Business Performance Index)

Methods	convRateLift	avgHitConvCost	avgAllConvCost
MTL-TN-TT	-10.53%	3.80	4.15
MTL-TN-Tucker	-15.84%	3.96	4.15
MTL-TN-LAF	-18.26%	3.92	4.15
MTL-CS-125	-18.34%	3.72	4.15
MTL-CS-256	-20.55%	3.92	4.15
MTL-CS-525	-19.10%	3.99	4.15

$$\begin{split} Lift_{bpi}(\pi) &= \frac{\mathit{ConvRate}(C) - \mathit{ConvRate}(B)}{\mathit{ConvRate}(B)} \\ \text{s.t.} \\ A &= \{s \in U \mid a = \pi_{\theta}(s)\} \\ B &= \{s \in U \mid a = \mathit{actual_offer}(s)\} \\ C &= \{s \in U \mid a = \pi_{\theta}(s) \ \& \ \pi_{\theta}(s) = \mathit{actual_offer}(s)\} \\ |C| &\geqslant \gamma |B|, \qquad \gamma \leqslant 1 \end{split}$$

 It shows that the performance DRL method better than this two type of MTL methods

Uplift problem

- Directly model the incremental impact of a treatment on an individual response
- Aims at maximizing the differences between offering awards to the customers or not
- Extensively studied in traditional marketing, but received very little attention in internet financial marketing
 - Traditional classifiers predict the conditional probability

$$P^T(Y|X_1,...X_m)$$

• Uplift models predict change in behavior resulting from the action $P^{T}(Y|X_{1},...X_{m})-P^{C}(Y|X_{1},...X_{m})$

Uplift problem formulation

1

Uplift Modeling

$$Y(x,a) = B(x) + L(x,a)$$

X: User's features

a: The action provided, a = 0 means no action.

Y(x, a): The observed action response when x receives action a

B(x): The natural response of x when receiving no action

L(x, a): The uplift response when x receives action a

Objective:

$$max_{\pi} E_{X,\pi}[L(X,\pi(X))]$$

The goal is to find a optimal policy π to maximize the expected uplift response.

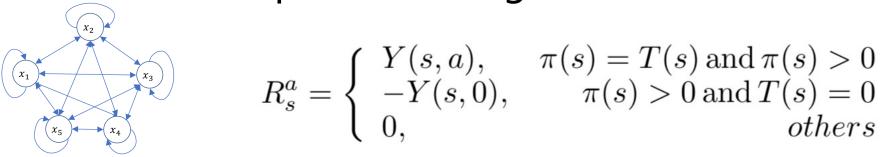
Main Challenges for uplift modeling by reinforcement learning

- 4
- The uplift value of a policy with the offline dataset hard to know because unobservable
 - Offline evaluation method provided
- The uplift value for each user hard to know
 - Policy gradient method dealing with delayed rewards
- Comparing with traditional direct modeling

$$Y(x,a) = B(x) + L(x,a) \text{ VS } Y(x,a)$$

- Algorithmic view
 - More information about the structure of data
- Financial view
 - What truly matters is the difference between providing an action or not, especially when actions cost real money

The MDP model of uplift modeling and reward function



Q-value Estimation

$$Q^{\pi}(s,a) = \begin{cases} (\underline{Y}(s,a) - \overline{Y^T}) + (V^{\pi}(s^*) - \overline{V^{\pi}}(s^*)), & \pi(s) = T(s) \text{ and } \pi(s) > 0\\ (\overline{Y^C} - Y(s,0)) + (V^{\pi}(s^*) - \overline{V^{\pi}}(s^*)), & \pi(s) > 0 \text{ and } T(s) = 0\\ 0, & others \end{cases}$$

$$\overline{Y^T} = \sum_{m=1}^M Y_m^T/M$$
 and $\overline{Y^C} = \sum_{m=1}^M Y_m^C/M$

 $\overline{V^\pi}(s^*) = \sum_{m=1}^M V_m^\pi(s^*)/M$: The average value of multiple batches

 Y_m^T : The average response for actions group and $\ Y_m^C$ for the control group

Algorithm 1: Policy Graident Algorithm for Uplift Modeling

Input: Episode number numEpoch. Training data Data, batch size bs, learning rate α

Output: The policy network θ

for $epoch \leftarrow 1$ to numEpoch do

Sample M batches $\Gamma = \{\Gamma_1, \dots, \Gamma_M\}$ from Data, where each batch contains bs samples.

foreach $\Gamma_m \in \Gamma$ do

$$A_m = \{a_{m,1}, \dots, a_{m,bs}\}, \text{ where } a_{m,i} \sim \pi(s_{m,i}, \theta)$$
$$V_m^{\pi}(s^*), \overline{Y^T}, \overline{Y^C} = UMG(\Gamma_m, A_m)$$

$$\overline{V^{\pi}}(s^*) = \sum_{i=1}^{M} V_m^{\pi}(s^*)/M$$

for $m \leftarrow 1$ to M do

Compute the
$$Q^{\pi}(s_{m,i}, a), \forall s_{m,i} \in \Gamma_m$$
, according to Equ. 9
$$\theta \leftarrow \theta + \alpha \sum_{i=1}^{bs} \nabla_{\theta} \log \pi(s_{m,i}, a_{m,i}) Q^{\pi}(s_{m,i}, a_{m,i})$$

 Offline Evaluation Method-Uplift Modeling General Metric (UMG)

$$\bar{z} = \frac{1}{N} \sum_{i=1}^{N} z^{(T,i)} - \frac{1}{N} \sum_{i=1}^{N} z^{(C,i)}$$

Where,

$$Z^{T}(\pi) = \sum_{a=1}^{K} \frac{1}{p_{a}} Y(X, a) (\pi(X) == a) (T(X) == a)$$
$$Z^{C}(\pi) = \sum_{a=1}^{K} \frac{1}{p_{a}} Y(X, 0) (\pi(X) == a) (T(X) == 0)$$

An unbiased metric for accurate offline evaluation of uplift effects

RLift ABTest experiments design

Compared Baselines

- DRL-A3C
 - Same Markov Decision Process.
 - Reward is calculated for each sample, comparing with RLift using delayed rewards

- DNN

- Also known as Separate Model Approach in Uplift modeling literatures
- Regressing the response for each couple of user's features and action first, and then choosing the action corresponding to the maximal response for each user

Contextual Bandit

- The problem can be regarded as partial label problems in the field of contextual bandit
- OffsetTree algorithm (Beygelzimer and Langford, 2009) claims a state-of-art performance

Random

All the results are compared with the one from random decision by improved percentage

RLift ABTest experiments design

Parameter setting

- Neural Network
 - {one, two, three} hidden layers with size of {256, 512, 1024, 2048} are considered
 - Activation function: tanh
 - Learning rate: 0.1
 - RLift Batch size: 10000
 - Maximal iterations: RLift: 200, DRL-A3C:20000000, DNN:20000000
- Features
 - 250 related attributes, such as one's resident, age, gender and so on
- Samples
 - 20,000,000 samples are used for training, while 2,000,000 samples are used for evaluation

RLift performance evaluation

Model	RLift	DRL-A3C	DNN	Contextual Bandit	Random
Relative Lift	9.0218%	8.8134%	5.3585%	2.6724%	0

- RLift is slightly better than DRL-A3C, and it seems that they are both approaching the overall optimal policy
- The uplift signal is usually weak in real scenario, resulting a worse performance for directly modeling like DNN
- Contextual Bandit(OffsetTree) algorithm may be not suitable for big data scenario
- Besides, RLift can
 - Deal with any number of actions (in comparison to traditional uplift modeling)
 - Be applied to applications with responses of general types

Ongoing and future work

ROSA(Reinforcement Online Service of AI)

- Effective RL formulation, tuning and evaluation
 - General reward function design with reward learning
 - Industry RL Model Evaluation
 - General evaluation data set like ImageNet
 - Performance evaluation metrics
 - Virtual to actual simulation environment: feedback, interaction etc.
- General DRL framework for intelligent finance decision making
 - To provide a unified, automatic and real-time intelligent decisionmaking service(driven by complex events)
- DRL with Lifelong Learning
- DRL with Constraints(budget/uplift/roi)
- DRL with Game theory and PGM, Multi-Agents System

Thanks!

• Q&A

DRL performance evaluation

Single DNN

The classification accuracy of different activation functions with fixed network structure [1000, 1000, 800].

sigmoid	tanh	relu
0.647	0.644	0.563

 The classification accuracy of different network structure with fixed activation function (sigmoid).

[1000]	[256]	[125]
0.647	0.643	0.654

Trace norm MTL

 The classification accuracy of different tensor decomposition methods (LAF, Tucker, TT) with sigmoid activation function.

Methods	[1000]	[256]	[125]
LAF	0.676	0.648	0.660
Tucker	0.686	0.672	0.699
TT	0.707	0.690	0.709

DRL performance evaluation

- Cross stitch MTL
 - The classification accuracy of different network structures.

[125]	[256]	[525]
0.670	0.662	0.659

- Experiment results with
 - Comparison the MTL methods on the random bucket data.

Methods	convRateLift	avgHitConvCost	avgAllConvCost
MTL-TN-TT	1.69%	4.13	3.57
MTL-TN-Tucker	3.67%	4.05	3.57
MTL-TN-LAF	1.64%	3.70	3.57
MTL-CS-125	-2.73%	3.55	3.57
MTL-CS-256	-9.16%	3.70	3.57
MTL-CS-525	-0.65%	3.46	3.57

Compared with random bucket data, the trace norm MTL have positive lift

