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Abstract

Training large reasoning models (LRMs) with reinforcement learning in STEM
domains is hindered by the scarcity of high-quality, diverse, and verifiable problem
sets. Existing synthesis methods, such as Chain-of-Thought prompting, often gen-
erate oversimplified or uncheckable data, limiting model advancement on complex
tasks. To address these challenges, we introduce SHARP, a unified approach to
Synthesizing High-quality Aligned Reasoning Problems for LRMs reinforcement
learning with verifiable rewards (RLVR). SHARP encompasses a strategic set
of self-alignment principles—targeting graduate- and Olympiad-level difficulty,
rigorous logical consistency, and unambiguous, verifiable answers—and a struc-
tured three-phase framework (Alignment, Instantiation, Inference) that ensures
thematic diversity and fine-grained control over problem generation. We imple-
ment SHARP by leveraging a state-of-the-art LRM to infer and verify challenging
STEM questions, then employ a reinforcement learning loop to refine the model’s
reasoning through verifiable reward signals. Experiments on benchmarks such as
GPQA demonstrate that SHARP-augmented training substantially outperforms
existing methods, markedly improving complex reasoning accuracy and pushing
LRM performance closer to expert-level proficiency. Our contributions include the
SHARP strategy, framework design, end-to-end implementation, and experimental
evaluation of its effectiveness in elevating LRM reasoning capabilities.

1 Introduction

Large Reasoning Models (LRMs), such as OpenAI-O1, O3/O4 (OpenAI, a,b), Qwen3 (Qwen), and
DeepSeek-R1 (DeepSeek-AI, 2025), have demonstrated remarkable capabilities in complex domains
like mathematics and coding (Chen et al., 2025). However, mastering complex, multi-step reasoning,
especially within STEM domains, remains a significant challenge (Hochlehnert et al., 2025; Rein
et al., 2024; Lewkowycz et al., 2022). In these fields, models must not only understand the problem
but also perform rigorous logical deductions to arrive at accurate answers. While techniques like
Chain-of-Thought (CoT) prompting (Wei et al., 2022) encourage models to produce intermediate
reasoning steps, the quality, complexity, and logical soundness of these generated paths can be
inconsistent, often limited by the scale and quality of the underlying training data. Generating high-
quality reasoning data for STEM is notoriously difficult. It requires domain expertise, careful problem
construction to avoid ambiguity, and verifiable solutions (Lightman et al., 2023). Manually creating
such datasets is expensive and slow, while existing automated methods may lack the necessary depth,
diversity, or logical coherence required to train truly advanced reasoning models (DeepSeek-AI,
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2025). This scarcity of suitable training data forms a critical bottleneck in advancing LLM reasoning
capabilities towards expert-level or even superintelligence performance (Li et al., 2025).

To overcome these limitations and further enhance LRMs’ performance on complex STEM reasoning
tasks, particularly those requiring graduate- or Olympiad-level knowledge and reasoning skills (e.g.,
GPQA), we introduce a novel SHARP(Synthesizing High-quality Aligned Reasoning Problems)
approach. Specifically, the main components of SHARP approach include:
The SHARP Strategy: The strategy includes a set of self-alignment guiding principles covering
problem difficulty (comparable in difficulty to graduate-level coursework or challenging Olympiads),
reasoning consistency, answer format, authenticity, language, modality, structure, and output format-
ting, etc. This strategy focuses not only on alignment principles throughout the reasoning process,
but also emphasizes answer verifiability and unambiguity.

The SHARP Framework: The framework comprise Alignment, Instantiation, and Inference
phases. The Instantiation phase includes Three-Tier Subject Categorization, a hierarchical system
(e.g., Subject→ Category→ Topic) enabling targeted generation of diverse samples across specific
STEM sub-fields.

The SHARP Implementation: We first implement the SHARP framework leveraging an open-source
state-of-the-art LRM (such as DeepSeek R1 DeepSeek-AI, 2025) itself to synthesize self-aligned
generative challenging STEM problems systematically, their step-by-step problem-solving reasoning
and reference answers, guided by the SHARP strategy. Then we evaluate these samples with general
verifiers, such as Math-Verify (HuggingFace). to obtain the final ground truth. By utilizing these
synthesized aligned high-quality and challenging samples, we train large reasoning models through
reinforcement learning from zero (like DeepSeek R1 Zero (DeepSeek-AI, 2025)) and further enhance
the model’s reasoning capabilities in complex STEM problem-solving.

Extensive experiments demonstrate that our proposed SHARP strategy, particularly when coupled
with the SHARP framework, through SHARP Implementation, can produce large-scale, high-
quality samples capable of significantly boosting the complex reasoning performance of LLMs with
reinforcement learning, pushing their reasoning capabilities closer to expert-level proficiency in
STEM domains. Our main contributions are as follows:

• We propose a novel SHARP approach, comprising a set of carefully designed self-aligned
core principles for synthesizing aligned generative complex and high-quality STEM reason-
ing samples.

• We detail the methodology in the SHARP framework, including Alignment, Instantiation,
and Inference phases. The Instantiation phase includes a structured data fusion framework
incorporating three-tier subject categorization for diverse and targeted sample generation.

• We implement the framework for LRMs with reinforcement learning for enhancing the
complex reasoning capabilities of STEM problem-solving.

• Experiments demonstrate the effectiveness of the proposed approach in improving model
performance on challenging STEM reasoning tasks and benchmarks through comprehensive
evaluations.

• The SHARP offers a potential pathway to significantly enhance LRM performance on
challenging STEM reasoning benchmarks like GPQA (Rein et al., 2024).

The remainder of this paper is organized as follows: Section 2 introduces background concepts.
Section 3 details our proposed SHARP approach. Section 4 outlines the experimental setup. Section
5 presents experimental results and analysis. Section 6 discusses related work. Finally, Section 7
concludes the paper.

2 Background

LLMs often struggle with problems demanding true logical reasoning. Optimizing LLM reasoning to
enable systematic, human-like logical thinking remains a key research direction. Several techniques
are proposed to elicit reasoning from LLMs.

Chain-of-Thought (CoT): CoT prompting improves LLM performance on complex tasks by guiding
them to generate intermediate reasoning steps (Wei et al., 2022; Li et al., 2024; Yeo et al., 2025). By
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mimicking human thought processes, CoT breaks down complex problems into smaller, manageable
steps, aiding comprehension and solution derivation. Variants include Self-Consistency (Wang
et al., 2023a), which samples multiple reasoning paths, and Tree-of-Thoughts (Yao et al., 2023) or
Graph-of-Thoughts (Besta et al., 2024), which explore more complex reasoning structures. However,
CoT has limitations: it can be highly dependent on precise prompt engineering. Crucially, the final
generated answers cannot easily be verified or even are usually not accurate.

Self-Alignment in Large Reasoning Models (LRMs): Self-alignment utilizes an LLM’s own
capabilities to refine its behavior or training data (Wang et al., 2024b), aiming to reduce reliance on
human annotation and improve data quality and diversity through model self-generation, evaluation,
or correction (Dong et al., 2025). Samples include LLMs generating responses to unknown questions
with explanations of unanswerability or using multi-round bootstrapping for self-improvement (Deng
et al., 2024). Self-alignment offers a promising direction for training more powerful and reliable
LLMs (Cao et al., 2024).

Reinforcement Learning for LLMs: The LRMs RL model OpenAI-O1, O3/O4 (OpenAI, a,b),
Qwen3 (Qwen), and DeepSeek-R1 (DeepSeek-AI, 2025) involve self-play or self-critique mechanisms
where the model learns from rewards generated based on its own outputs, akin to AlphaZero (Silver
et al., 2017) but applied to text generation and reasoning.

In addition, several challenging benchmark datasets have been developed to evaluate LLM reasoning
capabilities in STEM. GPQA (Graduate-Level Google-Proof Q&A Benchmark) (Rein et al., 2024) is
designed by domain experts to be extremely difficult (PhDs achieve ∼65% accuracy). Its “Google-
proof” nature makes it ideal for assessing deep understanding and reasoning, as answers are hard
to find via web search. Performance on this benchmark serves as a crucial proxy for evaluating the
effectiveness of our proposed SHARP approach.

3 SHARP: Synthesizing High-quality Aligned Reasoning Problems

Our proposed SHARP approach aims to systematically generate high-quality, complex STEM
reasoning samples by guiding a state-of-the-art LRM (such as DeepSeek R1) instance-alignment
reasoning inference through the SHARP framework 3.2 governed by the SHARP following strategy.

3.1 The SHARP Strategy

The starting point of the entire SHARP approach is to apply the SHARP strategy, and Fig.1 illustrates
the SHARP strategy pipeline, including instance-level problem generation and alignment inference
phases. This indicates that all subsequent steps, especially the Instance-Alignment Reasoning
Inference in Fig.1 (described in Instantiation Phase 3.2), will strictly follow the self-alignment
principles in the SHARP strategy.

Compared with conventional Direct QA and Chain-of-Thought (CoT) reasoning, the core objective
of the SHARP strategy shown in Algo.1 is to ensure that generated samples possess high-quality
and challenging samples, and precise reference answers. These synthesized aligned questions are not
only of high difficulty and topic diversity, but also strictly follow the high consistency requirements
of logic, ground truth, authenticity, language, structure, modality, and format. More importantly,
the verified reference answers of these high-quality questions will strictly meet the Ground Truth
consistency and complexity expansion requirements, that is, it will be an objectively verifiable single
value (or a specified aggregation form) and follow the format specification.

Specifically, we formalize the SHARP self-alignment strategy as shown in Algorithm 1.

3.2 The SHARP Framework

Building upon the SHARP strategy, we introduce an enhanced SHARP data fusion framework
specifically designed for synthesizing high-quality reasoning problems in STEM sub-disciplines. The
core of this framework is the construction of the “Seed Topics library”, which is built on a “Three-
Tier Category” knowledge structure. This structure integrates the Magpie query generation approach
(Xu et al., 2025b) with advanced semantic clustering and balanced sampling techniques, improving
both the diversity and representativeness of the synthetic reasoning queries. Seed documents are
meticulously curated from established benchmark question banks (we will not directly rephrase the
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Figure 1: The SHARP Approach

Algorithm 1 SHARP Self-Alignment Problem Synthesis Strategy
Require: Seed topic set S = {s1, s2, . . . , sN}; alignment strategy constraints {xv}; base LRM

model; reasoning spec Rspec; verifier V
Ensure: Verified aligned question-answer pairs Q = {(q1, a1), . . . , (qm, am)}

1: Initialize Q← ∅
2: for each seed topic si ∈ S do
3: ▷ Alignment Phase
4: Configure alignment constraints: Alignment constraints {xv} (See Appendix A for details.)
5: Construct reasoning blueprint (e.g., step-by-step, propose-verify)
6: ▷ Instantiation Phase
7: Generate prompt pi ← INSTANTIATEPROMPT(si, {xv}, Rspec)
8: Select reasoning structure using Three-Tier Category hierarchy.
9: ▷ Inference Phase

10: Query model with pi to generate (qi, ri, ai):
qi ← question text, ri ← reasoning trace, ai ← final answer

11: Format output using SHARP conventions:
<question start> qi <question end>
reasoning: ri, final answer: \boxed{{$answer}}

12: ▷ Verifying Phase
13: if V (ri, ai) passes all alignment checks then
14: Q← Q ∪ {(qi, ai)}
15: end if
16: end for
17: return Q

query based on the validation set, but only analyze the topic keypoints covered by these benchmarks)
and high-quality handcrafted corpora (STEM textbooks, papers, and data recalled through Common
Crawl etc.), while cutting-edge LLMs, such as DeepSeek R1 and Qwen3, are employed to facilitate
comprehensive topic extraction and “Three-Tier Category” generation, ensuring a broad coverage of
critical reasoning domains. The clustering process, utilizing K-means algorithms (MacQueen, 1967)
on BGE-m3 embeddings (Chen et al., 2024), in tandem with balanced sampling, addresses potential
biases, ensuring uniform representation across a spectrum of reasoning topics.

Moreover, the integration of persona-based methodologies (Ge et al., 2025) and keypoint enhance-
ments introduces a diverse array of reasoning contexts and enables the modulation of query difficulty
levels, facilitating the generation of training data that reflects both problem complexity and cognitive
challenges. This methodological approach ensures scalable reasoning problem synthesis that aligns
closely with the depth and complexity required in STEM-related tasks. The SHARP framework, by
leveraging sophisticated reasoning capabilities of LLMs like DeepSeek R1, synthesizes logically
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Figure 2: The SHARP Framework

coherent, complex reasoning problems that are carefully aligned with the nuanced demands of STEM
disciplines. The primary objective of this framework is to generate high-quality, diverse training
samples that drive the optimization of reinforcement learning (RL) models, especially in the context
of high-difficulty STEM benchmarks.

The SHARP framework is underpinned by its core modules, prominently featuring the Self-
Alignment block (depicted in Fig. 2). This block guarantees the adherence to stringent quality
standards for the generated content, encompassing aspects such as question difficulty, reasoning
consistency, and answer verifiability. It systematically encompasses three fundamental phases: Align-
ment, Instantiation, and Implement, thereby constructing a comprehensive reasoning alignment
pathway from the initial SHARP strategy formulation to the generation of specific instances. This
structured approach ensures that all internal operations are cohesively aligned with the SHARP
strategy, ultimately facilitating the synthesis of high-quality, aligned reasoning problems tailored for
reinforcement learning in large-scale reasoning models. The three phases of the SHARP framework
are detailed as follows.

Alignment Phase: This phase initiates the SHARP approach, and serves as its implicit input of the
overall goal of applying the SHARP Algo.1 strategy, corresponding to the “Self-Alignment” detail
box on the right. The specific requirements set in this phase are the key manifestation of the SHARP
Algo.1 strategy in sample generation, and all subsequent steps will align strictly to it. It inherits and
strengthens the core advantages of Self-Alignment, especially the structural requirements for the
reasoning process, ensuring the reasoning consistency and reliability of the generated samples, and
helping the training model to form more standardized and reliable reasoning capabilities.

We begin this phase by operationalizing the SHARP principles into executable constraints, passing
specific requirements (e.g., difficulty level, reasoning style, verification method, etc.) to the next phase.
Then the SHARP plans a systematic reasoning framework or blueprint that meets logical consistency,
ensuring that each step of deduction is supported by STEM theory or logic, eliminating jumps and
intuitive guesses, and maintaining format requirements (such as the Math-Verify (HuggingFace)).
It enforces that reasoning must be planned, orderly, and verifiable, rather than arbitrary heuristic
deduction. For example, we set the “Difficulty Degree” to graduate- or Olympiad-level, mandate
a “Step-by-Step” reasoning process, and employ a “Propose-verify” mechanism where the model
internally proposes and verifies each reasoning step for validity and truthfulness. These standards are
consistent with those in the Verifying stage.

Instantiation Phase: Building on the SHARP Algo.1 strategy of the Alignment Phase and a
“Three-Tier Category” knowledge framework, a clear “reasoning structure” definition stage for the
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Figure 3: The SHARP Implementation for Large Reasoning Models Reinforcement Learning

instantiations is introduced, distinct from the relatively free “Reasoning” step in traditional CoT.
This instantiation phase integrates a “Three-Tier Category” knowledge framework to instantiate the
strategy to different subjects’ characteristics and structures. The “Three-Tier Category” knowledge
framework manages and organizes STEM knowledge hierarchically (e.g., Chemistry → Organic
Chemistry, Spectroscopy→ Elimination reactions, IR spectroscopy, Carbonyl compounds, Alcohols,
Characteristic IR absorption frequencies). A comprehensive and easily expandable “Seed Topics
library” (orange detail box) is organized in this hierarchy. This ensures the combination of broad
thematic coverage and professional depth, enabling targeted generation of complex samples in specific
STEM sub-fields. The structured topic information informs the Verifying stage for confirming
instance topic attribution and generation relevance.

Inference Phase: Under the guidance of the “reasoning structure” defined in the Instantiation Phase,
an instantiated aligned reasoning inference process generating a specific STEM sample that meets
the SHARP strategy is performed. This involves leveraging the capabilities of the state-of-the-art
LRMs model (such as DeepSeek R1) to generate aligned reasoning instances. Then these aligned
reasoning instances are submitted to the next Verifying stage.

The Verifying stage is mainly responsible for quality control, strictly verifying whether the adapted
instance fully complies with the Self-Alignment detail box, and whether it is consistent with the
three-level category theme of All Seed Topics it claims, to ensure that the final output sample
meets the preset high standards detailed in SHARP strategy. The final output of the entire process -
high-quality samples are generated that can elicit complex reasoning for LRMs RL training.

Building upon SHARP Algo.1, SHARP framework 2 introduces innovative “instance-level” rea-
soning, where each sample constitutes a complete and self-consistent reasoning structure. This is
achieved through a refined three-level subject classification adaptation mechanism, a robust inference
and verification process. These meticulously refined samples are invaluable for the model, enabling
it to learn fine-grained knowledge and complex reasoning patterns. By systematically generating
STEM samples with ultra-high complexity at the sample level, this comprehensive approach provides
unique value and significant potential for enhancing the complex reasoning capabilities of LRMs,
particularly in improving top STEM reasoning benchmarks, such as GPQA.

3.3 The SHARP Implementation

Based on the SHARP strategy and framework, we implement the SHARP approach with a state-
of-the-art LRM model (like DeepSeek R1) and generate complex reasoning samples at the sample
level, shown in Fig. 2. Then these synthesized high-quality self-aligned samples are used to
enhance the complex reasoning ability of the RL Zero model training (inspired by RL Zero (OpenAI,
a; DeepSeek-AI, 2025; OpenAI, b)). The system mainly consists of three core stages: SHARP
Inference, Verifying and RL Zero Training and are detailed as follows.

SHARP Inference:

1. SHARP Prompt Templates ({pi}): As the starting point of the process, initial aligned
question prompt templates that meet the SHARP strategy (such as high difficulty, plain text,
single question, factual accuracy, etc.) are constructed.

2. SHARP Seed Instantiation ({ski }, k = 1, ..., N , here N is the total number of topics):
Extract an aligned prompt xi from the SHARP prompt templates, and map the input general
prompt xi with the specific STEM knowledge points or topic “seeds” {ski } based on the
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“Seed Topics Library” according to “Three-Tier Category” knowledge framework in the
SHARP framework. This provides context for the subsequent generation of domain-specific
and depth-specific reasoning, and the output is the prompt xi and its associated instance
with adapted specific topic {ski } from Seed Topics Library in the “Instantiation Phase”.

3. Questions and Reference Answers ({(qki , aki ), k = 1, ...,m}): Use the current best version
of the reasoning model (e.g., DeepSeek R1) to generate candidate reasoning responses for
the prompts and topic contexts, including high-quality questions {qki }, its SHARP reasoning
processes, and corresponding candidate reference answers ({aki })).

Verifying: Verification is performed according to the SHARP strategy and a scoring rubric combining
model self-check confidence and a rule-based reward model for the generated question and answer
pairs ({(qki , aki )}). The purpose is to further screen out data with poor quality, logical errors,
unreliable reward signals, or data that does not meet the final requirements, and ensure that only the
highest quality and most reliable samples enter the LRM RL training stage.

RL Training: Using the high-quality and verified samples created by the SHARP Inference and
Verifying, RL Zero training is carried out based on an RL algorithm (e.g., PPO (Schulman et al.,
2017), or GRPO (Shao et al., 2024)).

The unique value of SHARP inference system lies in its focus on quality and complexity, adaptive
sample generation of higher quality and more complex reasoning samples, and thereby can train
a more powerful LRM model through RL Zero and push the upper limit of the model’s reasoning
capabilities in STEM fields dimensions.

4 Experimental Setup

Our experimental setup was meticulously designed to rigorously evaluate the SHARP approach.
The Training Data consisted of two primary sets: a baseline dataset generated using standard CoT
prompting on existing STEM samples and a substantial dataset of 190,000 samples generated via
the SHARP methodology. Our comparison models included distinct sets for distillation training and
RL Zero training. For distill training, the Qwen2.5-7B-Instruct-Distill model served as a baseline,
representing capable LRMs without specific STEM reasoning dataset training. This was compared
against state-of-the-art DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI, 2025) and SHARP-Qwen2.5-
7B-Instruct-Distill (Qwen et al., 2025), where the latter was the baseline model further distilled
on SHARP-generated and verified samples. In the RL Zero Training comparison, Open-Reasoner-
Zero-7B (Hu et al., 2025) was the baseline, evaluated against SHARP-Open-Reasoner-Zero-7B,
which was trained using SHARP-generated problems through an RL Zero process. The training
details for distillation involved standard procedures on the respective datasets. For SHARP-RL
Zero training, we employed the GRPO algorithm, with a rule-based reward function, alongside
specified hyperparameters and computational resources detailed in the appendix. Finally, evaluation
metrics centered on model performance on the challenging GPQA STEM reasoning benchmark,
using accuracy metrics like pass@k to compare models trained with and without SHARP-generated
samples, thereby demonstrating the efficacy of our approach.

5 Experiments: Results and Analysis

Building upon the described experimental setup, our evaluations demonstrate the significant advan-
tages of the SHARP methodology in enhancing large reasoning models. The experiments were
conducted in two primary modes: high-quality complex reasoning knowledge distillation with su-
pervised fine-tuning, and the utilization of challenging SHARP-generated samples to elicit complex
reasoning capabilities in LRMs.

The results, presented in Table 1 and 2, are compelling. Approximately 190,000 STEM samples
were constructed using the SHARP approach. In the distillation experiments (Table 1), the SHARP-
Qwen2.5-7B-Instruct-Distill model, trained on SHARP data, achieved a GPQA Diamond score of
54.7. This represents an 8.3 percentage point improvement over the Qwen2.5-7B-Instruct-Distill
baseline (46.4) and a 4.8 percentage point increase over the DeepSeek-R1-Distill-Qwen-7B model
(49.9). This notable outperformance, even without RL refinement, underscores the superior quality
of data generated by the structured SHARP approach. The SHARP-trained model also showed
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consistent improvements across GPQA Physics (71.1 vs. 60.6 baseline), Chemistry (38.8 vs. 31.3
baseline), and Biology (57.9 vs. 55.9 baseline).

Models GPQA Physics GPQA Chemistry GPQA Biology GPQA Diamond

Qwen2.5-7B-Instruct-Distill (Baseline) 60.6 31.3 55.9 46.4
DeepSeek-R1-Distill-Qwen-7B 70.1 31.9 43.4 49.9

SHARP-Qwen2.5-7B-Instruct-Distill 71.1 38.8 57.9 54.7

Table 1: Performance on GPQA benchmark (Diamond subset: most difficult tier), comparing distilled
models trained with and without SHARP-synthesized data.

Models GPQA Physics GPQA Chemistry GPQA Biology GPQA Diamond

Open-Reasoner-Zero-7B (Baseline) 41.4 27.4 48.7 35.5

SHARP-Open-Reasoner-Zero-7B 44.6 26.3 54.9 37.0

Table 2: Performance on GPQA benchmark (Diamond subset: most difficult tier), comparing RL
Zero models trained with and without SHARP-synthesized data.

In the RL-Zero reasoning training experiments (Table 2), the SHARP-Open-Reasoner-Zero-7B
model, leveraging SHARP-generated STEM problems, achieved a GPQA Diamond score of 37.0,
marking a 1.5 percentage point improvement over the Open-Reasoner-Zero-7B baseline (35.5). This
outcome offers initial validation for the efficacy of SHARP-synthesized data in supporting RL-Zero
reasoning training. Notably, performance enhancements were recorded in GPQA Physics (44.6 vs.
41.4 baseline) and GPQA Biology (54.9 vs. 48.7 baseline). Conversely, GPQA Chemistry exhibited
a marginal decrease (26.3 vs. 27.4 baseline). We attribute this to the inherently high dependence of
chemistry problems on deep, structured domain knowledge and nuanced symbolic reasoning, which
may not be as effectively acquired through unsupervised RL Zero methods without pre-distilled
domain-specific priors, as detailed in Appendix C.2. Detailed analyses of these discrepancies,
including sample difficulty metrics (e.g., response length and reward signal distribution), are provided
in Appendix B.2.

To further substantiate these findings and provide a more granular understanding, Appendix B includes
comparative evaluations of SHARP-based distillation and ablation studies across STEM fields and
mathematical data. Specifically, we present controlled experiments analyzing the performance
impact of different SHARP-generated sub-corpora—physics, chemistry, biology—on both distillation
and RL Zero models. Representative subject-level ablation examples further demonstrate how
SHARP’s three-tier taxonomy enables precise control over difficulty and topic diversity. Additionally,
Appendix C systematically evaluates the 190,000 SHARP-generated samples, showcasing balanced
distributions across 600+ granular STEM subcategories and pass rate analyses that correlate with
human expert assessments. Together, these results confirm that SHARP’s aligned and structured
synthesis framework successfully generates high-difficulty, verifiable problems—spanning quantum
mechanics to organic reaction mechanisms—that directly enhance LRMs’ capacity for expert-level
scientific reasoning.

Collectively, these findings highlight the SHARP approach’s effectiveness in generating high-quality,
complex training samples. The consistent performance gains observed across different models and
evaluation subjects, particularly on the demanding GPQA-Diamond set, demonstrate that SHARP
significantly enhances the capability of LRMs to tackle complex STEM reasoning tasks, pushing
their performance closer to expert-level proficiency. The structured generation process, guided
by SHARP’s self-alignment strategy, yields problems that is not only diverse and challenging but
also logically rigorous and verifiable, directly contributing to the observed improvements in LLMs’
reasoning abilities.

6 Related Work

LLM Reasoning Enhancement: As discussed in Section 2, numerous efforts focus on improving
LLM reasoning via prompting (CoT, ToT, GoT) (Wei et al., 2022; Yao et al., 2023; Besta et al., 2024)
or specialized fine-tuning (Trung et al., 2024; Lobo et al., 2025). However, scaling up verifiable
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signals for long CoT remains challenging due to the limited availability of high-quality, verifiable
samples (Yeo et al., 2025). In contrast, SHARP generates verifiable, high-quality samples without
relying on prompt engineering, enabled by structured self-alignment.

Synthetic Data for LLM Reasoning: Synthesizing data plays a crucial role in training large language
models (LLMs) to enhance their reasoning abilities. Approaches like Self-Instruct and Alpaca (Wang
et al., 2023b) have pioneered the use of generated instructional data to align LLM behaviors with
desired outcomes. (Shao et al., 2023) introduced a method where a limited set of handcrafted
samples prompts the model to autonomously create additional data, selectively incorporating high-
quality demonstrations to bolster reasoning performance. Nemotron-CrossThink (Akter et al., 2025)
leverages cross-thought reasoning to enable self-improvement within mathematical domains, while
Qwen2.5-Math and Qwen2.5-Coder (Yang et al., 2024; Hui et al., 2024) focus on generating domain-
specific data for mathematical problem-solving and coding tasks, respectively. Phi-4-Reasoning (Xu
et al., 2025a; Abdin et al., 2025) demonstrates the effectiveness of compact architectures in handling
complex reasoning tasks. (Goldie et al., 2025) introduced SWiRL for multi-step reward shaping; such
signal shaping is partially mirrored in our SHARP RL reward design. Together, these studies highlight
the significance of sophisticated data synthesis strategies in improving LLM reasoning capabilities.
Unlike these approaches, SHARP specifically targets the synthesis of challenging STEM problems
by enforcing a unique combination of explicit self-alignment principles for reasoning consistency,
thematic diversity, and strict answer verifiability, aiming to overcome the limitations in generating
consistently complex and reliable reasoning samples.

Self-Alignment. Self-alignment refers to training paradigms that utilize a model’s own capabilities to
assess, revise, or supervise its outputs—reducing the reliance on external human annotation. Existing
approaches can be broadly categorized into three paradigms. First, preference-based self-alignment
leverages internal comparisons or preference signals, often sparse or noisy, to guide alignment. For
example, the Hummer framework (Wu et al., 2024) investigates competitive learning under weak
preference supervision, emphasizing the importance of carefully designed reward structures for stable
alignment. Second, consistency-based self-alignment uses internal logical coherence as a proxy
for correctness. The SelfFeedback framework (Liang et al., 2024) enhances model reasoning by
identifying and reinforcing internally consistent outputs, offering a form of self-improvement without
external labels. Third, and most relevant to our work, are verifiability-based self-alignment approaches,
which aim to provide strong and objective training signals by enforcing explicit correctness. Our
proposed SHARP framework builds on the motivation of reducing human oversight but introduces a
structured, multi-phase self-alignment strategy tailored to complex STEM domains. Unlike methods
that rely on implicit or heuristic feedback, SHARP synthesizes explicitly verifiable, logically rigorous,
and thematically diverse reasoning samples that are suitable for use as direct supervision targets.
By encoding these properties through a principled three-phase pipeline—Alignment, Instantiation,
and Inference—SHARP enables the systematic synthesis of reasoning problems that are not only
logically rigorous and thematically diverse, but also explicitly verifiable. This structure supports
high-fidelity, reward-aligned supervision signals, making it particularly effective for reinforcement
learning from verifiable rewards (RLVR) in domains where correctness must be grounded in domain
knowledge and formal reasoning. In this way, SHARP bridges the methodological gap between
implicit alignment strategies and the stringent verification demands of complex STEM problem-
solving.

In summary, SHARP offers a principled and extensible framework that advances the current state
of self-alignment and synthetic reasoning for large language models. By tightly integrating explicit
alignment objectives with a structured, verifiability-driven sample generation process, SHARP
produces high-difficulty and semantically controlled reasoning data that overcomes the limitations of
heuristic prompting, weak preference modeling, or unverified self-consistency. This makes SHARP
especially well-suited for reinforcement learning settings in scientific domains, where both logical
fidelity and verifiable correctness are essential. Ultimately, SHARP contributes a scalable, high-
precision foundation for training advanced reasoning models to operate effectively in complex and
rigorous STEM contexts.

7 Conclusion, Limitations and Future Work

We presented a novel SHARP approach to address the critical need for high-quality, complex, and
verifiable training problems for enhancing the reasoning capabilities of LLMs, particularly in STEM
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domains. By employing SHARP inference and Verifying process, our approach systematically
guides LRMs to generate challenging problems and logically sound, verifiable solutions efficiently
and at scale, addressing the limitations of traditional CoT methods in producing difficult, diverse, and
logically rigorous STEM reasoning samples. We presented the SHARP inference integrating with
Verifying process, enabling iterative RL foundation model training and performance enhancement
on complex reasoning tasks. Experimental results demonstrate significant performance gains on
challenging STEM benchmark GPQA compared to baselines trained on CoT data and public STEM
datasets, as well as substantial improvement over the state-of-the-art baseline model. For instance,
SHARP-augmented distillation training resulted in an 8.3 percentage point improvement on the
GPQA Diamond benchmark over the baseline. This validates the effectiveness of our proposed
approach in enhancing the ability of large reasoning models to tackle complex STEM problems.

Future work could explore applying this approach to other domains and more complex reasoning
tasks, and further optimizing the SHARP approach on various larger-scale RL reasoning foundation
models. Besides, designing a reward function that weights principles from the SHARP strategy
will be carried out. And distinctions among different subjects, such as chemistry and biology, have
different subject attributes from physics and mathematics, which may involve the further improvement
of logic, knowledge graph, and symbolic reasoning capabilities.
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A SHARP Self-Alignment Strategy Constraints

SHARP Self-Alignment Strategy Constraints Details

Problem Difficulty & Thematic Diversity Alignment: Generate highly complex problems
(graduate- or Olympiad-level) covering a wide range of STEM topics, covering expert-
level AI themes. Difficulty is benchmarked against top exams and datasets (GPQA, etc.).
Thematic coverage uses role-playing prompts template and a three-tier subject-category-topic
framework.

Logical Consistency Alignment: Problem-solving must rely solely on rigorous reasoning
or systematic derivation, avoiding pattern matching, heuristics, shortcuts, or fabrication. All
intermediate steps require justification, preventing logical gaps or errors due to intuition.

Ground Truth & Structure Alignment: Answers must be single, verifiable numerical values
(plain numbers, units, ratios, STEM formulas/equations). Avoid hard-to-verify formats (set
operations, free text). For multi-solution problems, mandate a specific aggregation (e.g., sum
or sum of squares, etc.) for a unique, objectively verifiable answer. Expand beyond single QA
to include multi-solution problems (requiring summary values) (e.g., “calculate total moles
of all possible products”).

Problem Authenticity Alignment: Problems should be novel, based on authoritative knowl-
edge, but not directly copied. They must be unambiguous, unbiased, accurate, and internally
consistent, avoiding nonsensical or hallucinated scenarios.

Language Consistency Alignment: The entire generation process (problem statement,
reasoning method, solution presentation) must use a single language (e.g., English or Chinese)
to prevent multilingual confusion leading to reasoning errors or bad verification cases.

Problem Structure Consistency Alignment: Problems must contain only a single primary
question, avoiding sub-questions, derivatives, or branching logic that leads to unverifiable
cases.

Modality Consistency Alignment: Problems must be strictly text-based, describing any
necessary complex structures (e.g., chemical molecules, genetic diagrams) textually.

Formatting Alignment: Use specific delimiters (e.g., <question_start>,
<question_end>) for the problem statement and a standardized format (e.g.,
\boxed{{$answer}}) for the final answer.

The complete template including the SHARP self-alignment strategy constraints for constructing the
challenge problem is shown in the following Table 8 and can also be found via this link.

B Performance Analysis of Distilling and RL Zero Model Reasoning Training
with SHARP Samples

B.1 Distilling Training Model Performance Analysis

Fig.4 compares models trained on SHARP-augmented Qwen2.5-7B-Instruct-Distill (Baseline)
and the strong benchmark DeepSeek-R1-Distill-Qwen-7B with samples generated by the SHARP
approach across three STEM subjects: physics, chemistry, and biology (Our distilled models, includ-
ing the RL Zero variants presented in this work, are evaluated on the GPQA benchmark using the
widely adopted OpenCompass framework (OpenCompass, 2023), ensuring strict consistency with
the official reported scores.). In addition, the physics, chemistry, and biology subjects all had positive
improvements, and the chemistry and biology subjects compared with the DeepSeek chemistry
subject improved significantly, indicating the effectiveness of our designed SHARP self-alignment
strategy and reasoning training model, reflecting the improvement of the model in general knowledge
and reasoning ability.

Also, model trained with SHARP problems only are significantly better than mathematical only
distillation problems in improving the ability of physics, chemistry, and biology, as shown in 5 and
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Figure 4: GPQA score improvement of single STEM disciplines (physics, chemistry, and biology) of
SHARP-Qwen2.5-7B-Instruct-Distill relative to benchmark model DeepSeek-R1-Distill-Qwen-7B
in overall ablation of STEM data generated by the SHARP approach and fused with some open-
source mathematical data. (The x-axis represents the different epochs run during the training of the
distill models, and the y-axis represents the GPQA score evaluation results corresponding to the
checkpoints of the models generated at different epochs).

6, and thus significantly better than mathematical only distillation problems in the overall GPQA
benchmark (Here, the mathematics data here accounts for 27.3%, mainly from (DeepScaleR, 2025;
ArtofProblemSolving; THUDM, 2025), mathematics competition problems from all over the world,
well-known universities, etc.). As seen from the Fig.6, the GPQA score of the distillation model is
not as significant in improving the chemistry index in the pure mathematics data set as in physics and
biology. This also shows, to some extent, that the attributes of chemistry and mathematical reasoning
are relatively different.

We conduct these distillation model supervised finetuning across 10 epochs for all datasets and a
learning rate of 5e-6. We employ a cosine learning rate scheduler, ensuring that the final learning rate
reaches 1% of the peak value. We train these models with about 190,000 samples on 32 NVIDIA
H800 GPUs for 10 hours. These core parameters for training are set as in Table 3:

Parameter Name Value
max_length 16384
learning_rate 5e-6
lr_scheduler_type cosine
warmup_ratio 0.01

Table 3: Distill Model Core Parameters.

Specific challenging problem samples generated by the SHARP approach used to train distill models
can be found via this link.
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Figure 5: GPQA score improvement of single STEM disciplines (physics, chemistry, and biology) of
SHARP-Qwen2.5-7B-Instruct-Distill relative to benchmark model DeepSeek-R1-Distill-Qwen-7B
in ablation of STEM data generated by the SHARP approach. (The meanings of the x and y axes are
the same as those in Fig.4.)

B.2 RL Zero Training Model Performance Analysis

As shown in Table 2 and Fig.7, after we added SHARP problems as the main training data (about
73%) for RL Zero enhanced reasoning training in SHARP-Open-Reasoner-Zero-7B, it has exceeded
the pure mathematics RL Zero mathematical reasoning model Open-Reasoner-Zero-7B (Baseline)
by about 4.22%, and the single subjects of physics and biology have exceeded the Open-Reasoner-
Zero-7B (Baseline) model, and the chemistry subject is basically the same, which shows that the
SHARP self-alignment strategy and inference training system implemented have improved the pure
complex reasoning ability of the model. Especially for chemistry, we compare two key metrics
for evaluation RL Zero training model: the response length (which usually is used to indicate the
complexity of the problems), as shown in Fig.8 and reward value (whose values are usually used to
indicate the difficulty degree of the problems) as shown in Fig.9 in three different problems datasets,
1) problems synthesized through traditional COT, 2) problems augmented synthesized referencing
to real challenging chemistry exercises and 3) problems synthesized SHARP approach. Through
the experimental comparison of each stage, the difficulty of the sample problems generated by our
SHARP approach has significantly increased the response length for the correct answer, and the
distribution of rewards has shown a significant downward trend. Although the GPQA score of the
chemistry subject has not improved significantly, through combined with the gradual and significant
improvement of the experimental evaluation indicators, it demonstrates the effectiveness of the
SHARP approach in improving the complex reasoning ability of the model, and also indicates that
increasing the model’s own complex problems to obtain the groundtruth can further significantly
increase the effect of the model.

Specific challenging problems generated by the SHARP approach used to train RL Zero models are
shown in the Table 4, and other samples can be found via this link.
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Figure 6: GPQA score improvement of single STEM disciplines (physics, chemistry, and biology) of
SHARP-Qwen2.5-7B-Instruct-Distill relative to benchmark model DeepSeek-R1-Distill-Qwen-7B
in ablation of some open-source mathematical data. (The meanings of the x and y axes are the same
as those in Fig.4.)

To initialize RL Zero training, we employ the verified SHARP-generated dataset containing input
questions and corresponding verified ground truth answers. We adopt Group Relative Policy Opti-
mization (GRPO) (Shao et al., 2024), a memory-efficient reinforcement learning method well-suited
to SHARP’s batch-verifiable training data. GRPO bypasses the need for a separate critic by estimat-
ing baselines from group-level sample scores. For each problem q, GRPO samples a group of outputs
o1, o2, . . . , oG from the old policy πθold and then optimizes the policy model πθ by maximizing the
following objective:

JGRPO(θ) = E
[
q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)

× 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, clip

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

)
−βDKL(πθ||πref))]

DKL[πθ||πref] =
πref(oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)
− log

πref(oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)
− 1. (1)

where ϵ and β are hyperparameters, and Âi,t is the advantage, computed using a group of rewards
{r1, r2, ..., rG} corresponding to the outputs within each group:

Âi,t =
ri −mean({r1, r2, ..., rG})

std({r1, r2, ..., rG})

Inspired by prior work (DeepSeek-AI, 2025), we employ a simplified reward function R_acc
grounded in binary accuracy. Unlike prior methods, SHARP enables reward assignment based

18



Figure 7: Open-Reasoner-Zero-7B performance in ablation of STEM data generated by the SHARP
approach. (The x-axis represents the different running steps during the training of the reinforcement
learning reasoning model, and the y-axis represents the GPQA score evaluation results corresponding
to the checkpoints of the models generated at different steps.)

solely on correctness, owing to its verified outputs. This design simplifies the reward signal while
preserving alignment quality. Here, the accuracy reward R_acc evaluates correctness based on
whether the model’s response ai is similar to the ground truth solution a′i to satisfy the correctness
criteria:

Racc(ai, a
′
i) =

{
1, if equal(ai, a′i),
0, otherwise.

We implement GRPO training on RL Zero models using OpenRLHF (Hu et al., 2024), an open-source
RL framework built atop Ray (Moritz et al., 2018), vLLM (Kwon et al., 2023), ZeRO-3 (Wang
et al., 2024a), and HuggingFace Transformers (Wolf et al., 2020). We train these models with about
190,000 samples on 256 NVIDIA H800 GPUs for 48 hours. Key algorithm parameters for RL Zero
models training are set as in Table 5. For each prompt, we generate 64 diverse completions to support
robust group-based reward estimation. The KL divergence constraint coefficient is fixed at 0.001
across all experiments. Additionally, we mix problems from various STEM domains during model
training to ensure diverse learning. We report accuracy by averaging the results over greedy decoding
across 16 independent inference runs, which ensures statistical stability while preserving inference
consistency for the GPQA benchmark evaluation. Answers are extracted from the standardized
\boxed{$Answer$} format to verify against the ground truth solutions to ensure correctness and
ensure alignment with SHARP’s verifiability constraints during automatic evaluation.

These results affirm that SHARP-aligned training samples, combined with GRPO and rule-based
accuracy rewards, significantly enhance RL Zero model performance in complex STEM reasoning
tasks.
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Figure 8: The response length of RL Zero model in ablation of chemistry data from three different
problems datasets, 1) problems synthesized through traditional COT, 2) problems augmented syn-
thesized referencing to real challenging chemistry exercises and 3) problems synthesized SHARP
approach. (The x-axis represents the different running steps during the training of the reinforcement
learning reasoning model, and the y-axis represents the response length when the models runs at
corresponding steps.)

Figure 9: The reward RL Zero model in ablation of chemistry data from three different problems
datasets, 1) problems synthesized through traditional COT, 2) problems augmented synthesized
referencing to real challenging chemistry exercises and 3) problems synthesized SHARP approach.
(The x-axis represents the different running steps during the training of the reinforcement learning
reasoning model, and the y-axis represents the reward when the models runs at corresponding steps.)
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Subject Name Problem and Reference Answer
Particle Physics, High Energy
Physics

"problem": "Solve the following chemical problem step by
step. The last line of your response should be of the form
\boxed{$Answer$} (without quotes) where Answer is the an-
swer to the problem. A core-collapse supernova at a distance of 1
kiloparsec (3.086× 1019 meters) releases 3× 1046 J of energy,
with 99% of this energy emitted as neutrinos. Each neutrino has
an average energy of 10 MeV (1.6× 10−12 J). A spherical lead
detector with a radius of 10 meters is used to observe these neu-
trinos. Lead has a density of 11,340 kg/m3 and an atomic mass
of 207.2 g/mol. The neutrino-nucleus interaction cross section
is 1× 10−43 cm2 per nucleus. Assuming neutrinos are emitted
isotropically and all physical quantities are uniform, calculate the
total number of neutrino interactions in the detector. **Constants
and Formulas:** Avogadro’s number: NA = 6.022×1023 mol−1

Sphere volume: V = 4
3πr

3 Neutrino flux at Earth: Φ = Nν

4πd2

Interaction rate: Ninteractions = Φ · σ ·Nnuclei Please reason step
by step, and put your final answer within \boxed{$Answer$}.",
"ref_answer": " 2140 ".

Organic Chemistry "problem": "Solve the following chemical problem step by
step. The last line of your response should be of the form
\boxed{$Answer$} (without quotes) where Answer is the an-
swer to the problem. An impure sample of zinc carbonate
(ZnCO3) undergoes thermal decomposition, releasing carbon
dioxide gas. The mass loss due to CO2 emission is measured
as 2.64 g. The resulting zinc oxide (ZnO) is then reduced using
excess carbon, producing 5.89 g of zinc metal. 1. Write the bal-
anced equation for the decomposition of ZnCO3. 2. Write the
balanced equation for the carbon reduction of ZnO. 3. Determine
the percentage purity of zinc in the original impure sample. As-
sume all reactions proceed to completion, and impurities do not
participate in any reactions. (Atomic masses: Zn = 65.38 g/mol,
C = 12.01 g/mol, O = 16.00 g/mol) Remember to put your final
answer within \boxed{$Answer$}", "ref_answer": " 58.9% ".

Molecular Biology, Virology "problem": "Solve the following biological problem step by
step. The last line of your response should be of the form
\boxed{$Answer$} (without quotes) where Answer is the an-
swer to the problem. The SARS-CoV-2 genome is a single-
stranded RNA virus with a genome length of 29,903 nucleotides.
The spike (S) protein gene constitutes 12.73% of the genome.
Each S protein monomer consists of amino acids with an aver-
age molecular weight of 110 Da. A single virion contains 2.5
femtograms (fg) of S protein. Calculate the total number of S
protein trimers on the virion’s surface. Use Avogadro’s number
(6.022 × 1023 mol−1) for your calculations. Remember to put
your final answer within \boxed{$Answer$}", "ref_answer":
" 3586 ".

Table 4: The challenging problems of physics, chemistry, and biology generated by the SHARP
approach.

C SHARP Challenging Problem Datasets Analysis

In this section, we first provide a detailed supplementary explanation of the overall dataflow process
of the SHARP approach. Then we further analyze the coverage of the subject categories related to
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Parameter Name Value Description
algorithm GRPO Reinforcement Learning Algorithm Used
actor_lr 1e-6 Learning Rate of The Actor Network
rollout_bs 256 Total Batch Size Used for Experience Collection
train_bs 16384 Total Batch Size Used During Parameter Updates
micro_train_bs 8 Batch Size for a Single Forward Pass During Training
micro_rollout_bs 8 Batch Size for a Single Forward Pass During Experience Collection
sample_k 64 Number of output samples (G) generated per prompt by the policy for

group reward estimation
lambda 1.0 Regularization Coefficient
gamma 1.0 Discount Factor
kl 0.001 KL Divergence Constraint Coefficient
max_len 8192 Maximum Sequence Length
temperature 1.0 Sampling Temperature

Table 5: RL Zero Algorithm Core Parameters. Parameter values were tuned based on ablations to
balance training stability, efficiency, and model performance.

Figure 10: The overall dataflow process of the SHARP approach.

the data flow and the difficulty of the STEM challenging problems generated by the SHARP method
based on this category.

The overall dataflow diagram of the construction of the Seed Topics Library and “Three-Tier
Category” knowledge structure for STEM problems in the SHARP approach is shown in Fig.10. As
mentioned, they were mainly built by methods combined with the persona method (Ge et al., 2025)
and the Magpie-like method(Xu et al., 2025b) to generate a large number of personalized target topic
query problems. Furthermore, in order to ensure the diversity and balance of the generated problems,
a clustering strategy is designed, and these questions are distributed and balanced. In this way, we
ensure that the generated problems cover a wide enough range of topics and have enough diversity
under each topic, so as to provide comprehensive and balanced training problems for training LRMs.

Persona-driven (Ge et al., 2025) prompts simulate domain experts with distinct problem-creation
styles (e.g., a theoretical physicist vs. an organic chemist), ensuring varied problem framing and
difficulty levels. Based on the persona method, we further improved the Magpie method to generate
a large number of target topic query questions. We first designed a new “Three-Tier Category”
knowledge structure with reference to the BISG category organization (Book Industry Study Group,
2025) and subject characteristics to ensure that the first-level sub-disciplines, second-level self-
disciplines, and basic concepts of each discipline are covered. Then we built high-quality seed
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Figure 11: The K-means clustering results based on question embedding features extracted using
BGE-m3 from problems generated by the SHARP approach.

documents to supplement and improve the themes of the “Three-Tier Category” knowledge structure
of SHARP through the following two aspects. On the one hand, we analyzed and extracted topic
keypoints based on high-quality open source training sets and question bankmarks such as GPQA
(here, we only extracted topic keypoints without quoting or rewriting problems to prevent data
leakage). On the other hand, we recall seed documents based on high-quality STEM textbooks,
academic papers, Common Crawl, etc., and extract topics through the latest reasoning models such as
Deepseek R1 and Qwen3 to obtain better topic diversity, thereby improving the model’s generalization
ability. Through the above series of methods, we ensure that the query problems have sufficient
coverage while having expert persona characteristics, and at the same time ensure that the generated
problems are consistent with the distribution of the current benchmark but have sufficient diversity
and depth, so as to provide comprehensive, rich and challenging problems training dataset support
for the complex reasoning of LLMs. In addition, we use BGE-m3 (Chen et al., 2024) to extract
embedding features from the generated problems, and then use the K-means (MacQueen, 1967)
algorithm for clustering. We specify about 1,000 clusters via elbow method analysis on BGE-m3
embeddings to ensure that the number of clusters can cover most of the query problems, while
ensuring that the queries within each cluster have a certain similarity and that there is sufficient
difference between clusters. While clustering, each class is uniformly sampled to ensure the class
balance of samples, and then an appropriate number of samples is extracted from each class for
training. Fig. 11 illustrates the clustering results based on query embeddings, where we visualize a
representative subset of 20 clusters. Each cluster exhibits strong intra-cluster cohesion, with samples
tightly grouped in the embedding space. This suggests that queries within the same cluster share high
semantic similarity. Moreover, clusters are well-separated from one another, indicating low semantic
overlap across different groups. The clear inter-cluster boundaries highlight the effectiveness of our
clustering pipeline in capturing meaningful semantic distinctions. Finally, the clustering and sampling
results are processed for data deduplication, detoxification, and decontamination. Specific examples
of the “Three-Tier Category” knowledge structure in the Seed Topics Library are shown in Table 6.

The “Three-Tier Category” structure, integrated with persona-driven prompts and clustering, ensures
thematic diversity and logical consistency in SHARP-generated problems, directly contributing to
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First-level Discipline Second-level Discipline Basic Knowledge-points
Theoretical Physics, High
Energy Physics

Quantum Mechanics, Parti-
cle Physics

Energy levels, Heisenberg uncer-
tainty principle, Lifetime-energy un-
certainty relation, Energy resolution,
Quantum states

Organic Chemistry Stereochemistry Hydrogenation, Epoxidation, Nucle-
ophilic substitution, Esterification,
Limonene, Peracids, DCC coupling

Basic Biology Molecular Biology, Cancer
Biology, Genetics, Epigenet-
ics

Tumor suppressor genes, Gene
expression, Epigenetic regulation,
Gene silencing, Mouse models, Can-
cer cells

Table 6: The “Three-Tier Category” structure examples of physics, chemistry and biology in the
SHARP Seed Topics Library.

enhanced model performance. Based on these data flow processing, the SHARP approach first
combines the self-alignment strategy as shown in Algorithm 1 to generate problems that help guide
the reinforcement reasoning model at multiple levels. By integrating the persona (Ge et al., 2025) role,
the “Three-Tier Category” structure, and the SHARP self-alignment strategy, the following template
for creating problems is designed, as shown in the Table 8. Then, the problem template is fused
with the actual “Three-Tier Category” structure and knowledge framework through instantiation
reasoning, thereby generating complex reasoning problems with self-alignment conditions and
their corresponding reference answers. These complex questions and reference answers are then
further verified, and finally, a high-quality, challenging question set and ground truth for complex
reasoning are generated. The generated problems are not only conducive in characteristic disciplines
and enhancing the generalization reasoning capabilities, but also generating difficult and logically
consistent problems and corresponding verifiable answers that are conducive to LRMs through
reinforcement learning via verifiable rewards (RLVR).

To enable scalable generation of SHARP-aligned STEM reasoning problems, we deploy the DeepSeek
R1 model using the SGLang inference framework (Zheng et al., 2024), selected for its high-throughput
serving capabilities, long-context support, and compatibility with structured output formatting.

This deployment is integrated into the SHARP Instantiation and Inference phases, where DeepSeek
R1 is queried using templated prompts instantiated from persona roles, seed topics, and self-alignment
constraints. Table 7 summarizes the server and inference configurations. Each request follows the
SHARP prompting strategy (Table 8), with the messages field encoding the relevant persona roles,
subject categories, and alignment directives.

The system, deployed on 8 NVIDIA H20 GPUs, supports 16K-token contexts and accommodates
up to 48 concurrent requests, enabling efficient generation of high-difficulty, verifiable reasoning
problems across diverse STEM domains. In total, 229,452 question–answer pairs were generated over
168 hours and subsequently evaluated through the SHARP Verifying phase for quality assurance
prior to integration into RL Zero training.

The raw generated data samples for creating the challenging problems using the SHARP approach
can be found via this link.

Next, we conduct a detailed analysis of the coverage of evaluated benchmarks (mainly on GPQA as
an example), subject categories related to the dataflow and the difficulty of the STEM challenging
problems (mainly on physics, chemistry, and biology) generated by the SHARP method.

C.1 Key Knowledge Point Distribution

Through statistical analysis of the distribution of labels and knowledge points, we found that the
GPQA benchmark is unevenly distributed, relevant key points distributions shown as in Fig.13, 15,
17 and basic knowledge points shown in Fig.14, 16, 18. Therefore, in the SHARP data synthesis
method, we sampled according to the distribution of disciplines and the corresponding knowledge
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Parameter Name Value Description
tp 8 Tensor Parallelism
max-running-requests 48 Concurrency
mem-fraction-static 0.94 Memory Allocation
context-length 16384 Context Length
temperature 0.6 Temperature
max_tokens 4192 Maximum Output Tokens
repetition_penalty 1.05 Repetition Penalty
top_p 0.8 Top-p Sampling

Table 7: Key SGLang server and inference parameters for each SHARP instantiated problem
generation prompt.

Figure 12: The overall subjects distribution of 229,452 question-answering problems generated by
the SHARP approach and the baseline traditional CoT method.

points to ensure that the synthetic data fully covers the relevant knowledge points of GPQA in terms
of distribution.

C.2 Category Distribution Analysis

We carefully analyzed the 229,452 STEM question-answering problems generated by the SHARP
approach and the baseline traditional CoT method (about 190,000 questions remained after disin-
fection, deduplication, and decontamination, and pass ratio filtering), with the subject distribution
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The SHARP Approach Prompt

<Role_Start>
To test the < Subject_Name: {subject_name}> reasoning and complex problem-solving
skills of talented graduate students across various <Subject_Name:{subject_name}> dis-
ciplines, you, a <Persona_Role: {persona_role} > at a world-renowned institution, are
creating a graduate- or Olympic-level challenging problem.
<Role_End>
<Task_Description_Start>

• You MUST refer to the following resources: <SUB> Subject_Name: {subject_name}
Subdisciplines: {subdisciplines}<SUB>, <BC>Basic Concepts: {ba-
sic_concepts}<BC>.

• You MUST randomly choose one or more items from the <SUB> Subject_Name:
{subject_name} Subdisciplines: {subdisciplines}<SUB>, and then select several re-
lated concepts from the <BC>Basic Concepts: {basic_concepts}<BC> according to the
subdisciplines to form an outline for the problem. Finally, create a calculation problem.

<Task_Description_End>
<Requirements_and_Expectations_Start>
Note: The problem must satisfy the following self-alignment constraints:

• Problem Difficulty & Thematic Diversity Alignment: Generate highly complex prob-
lems (graduate- or Olympiad-level) covering a wide range of STEM topics. Difficulty
is benchmarked against top exams and datasets (GPQA, etc.). Thematic coverage uses
role-playing prompts template and a three-tier subject-category-topic framework.

• Logical Consistency Alignment: Problem-solving must rely solely on rigorous reasoning
or systematic derivation, avoiding pattern matching, heuristics, shortcuts, or fabrication.
All intermediate steps require justification, preventing logical gaps or errors due to
intuition.

• Ground Truth & Structure Alignment: Answers must be single, verifiable numerical
values (plain numbers, units, ratios, STEM formulas/equations). Avoid hard-to-verify
formats (set operations, free text). For multi-solution problems, mandate a specific
aggregation (e.g., sum or sum of squares, etc.) for a unique, objectively verifiable answer.
Expand beyond single QA to include multi-solution problems (requiring summary values)
(e.g., “calculate total moles of all possible products”).

• Problem Authenticity Alignment: Problems should be novel, based on authoritative
knowledge, but not directly copied. They must be unambiguous, unbiased, accurate, and
internally consistent, avoiding nonsensical or hallucinated scenarios.

• Language Consistency Alignment: The entire generation process (problem statement,
reasoning method, solution presentation) must use a single language (e.g., English or
Chinese) to prevent multilingual confusion leading to reasoning errors or bad verification
cases.

• Problem Structure Consistency Alignment: Problems must contain only a single
primary question, avoiding sub-questions, derivatives, or branching logic that leads to
unverifiable cases.

• Modality Consistency Alignment: Problems must be strictly text-based, describing any
necessary complex structures (e.g., chemical molecules, genetic diagrams) textually.

• Formatting Alignment: Use specific delimiters (e.g., <question_start>,
<question_end>) for the problem statement and a standardized format (e.g.,
\boxed{{$answer}}) for the final answer.

<Requirements_and_Expectations_End>

Table 8: The SHARP prompt to synthesize high-quality aligned reasoning problems for LRMs
reinforcement learning. The colored variables with curly braces in the prompt template are the
variables corresponding to the algorithm framework, which will be instantiated with specific values
for problem generation.
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Figure 13: The physics subject distribution of basic knowledge points word cloud of GPQA bench-
mark.

across physics, chemistry, and biology shown in Fig.12. The distribution of subject categories for
each subject of physics, chemistry and biology is described below.

Physical Category Distribution Analysis The category distribution of the synthetic dataset is pre-
sented in the following Fig.19. As observed, the data adheres to a scientifically structured three-level
taxonomy. The first-level categories "Theoretical Physics", "Mechanics", and "Electromagnetism" are
the top three categories, encompassing critical second-level disciplines such as Quantum mechanics,
Fundamental mechanics, and Electrodynamics. These branches further decompose into highly special-
ized third-level categories like Theoretical Mechanics, Wave Functions and Schrodinger Equations,
Electrostatic Fields, Laws of Thermodynamics—domains particularly effective for evaluating models’
reasoning and computational capabilities. Notably, the dataset maintains substantial diversity despite
this concentration, boasting over 200 distinct third-level categories. This comprehensive coverage
across diverse physics domains ensures robust training signals, enabling models to develop balanced
proficiency in both dominant and niche scientific reasoning tasks.

Biology Category Distribution Analysis The category distribution of the synthetic dataset is
presented in the following Fig.20. As observed, the data adheres to a scientifically structured three-
level taxonomy. The first-level category "Fundamental Biology" dominates with over half of the
samples, encompassing critical second-level disciplines such as molecular biology, genetics, and
cell biology. These branches further decompose into highly specialized third-level categories like
molecular genetics, gene expression, and DNA repair mechanisms—domains particularly effective
for evaluating models’ reasoning and computational capabilities. Notably, the dataset maintains
substantial diversity despite this concentration, boasting over 100 distinct third-level categories. This
comprehensive coverage across diverse biological domains ensures robust training signals, enabling
models to develop balanced proficiency in both dominant and niche scientific reasoning tasks.

Chemistry Category Distribution Analysis The analysis of category distribution within the synthetic
chemistry dataset is illustrated in the accompanying Fig.21. A careful examination reveals that the
data adheres to a rigorously structured three-tier category. At the first level, the category of "Organic
Chemistry" is predominant, representing more than 75% of the total samples. This primary category
encompasses significant second-level disciplines, including unsaturated hydrocarbons, pericyclic
reactions, and the methodologies for characterizing organic compounds. These second-level classi-
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Figure 14: The top 30 basic knowledge points of the physics subject of the GPQA benchmark.

fications are further delineated into specialized third-level categories, such as olefins, electrocyclic
reactions, and H-NMR nuclear magnetic resonance spectroscopy, which are particularly effective in
assessing the reasoning and computational capabilities of the models employed. Importantly, notwith-
standing the dominance of "Organic Chemistry," the dataset exhibits a commendable level of diversity,
with over 300 distinct third-level categories represented. This extensive range of coverage across
various domains of chemistry fosters robust training signals, thereby facilitating the development of
models that exhibit balanced proficiency in both mainstream and niche scientific reasoning tasks.

C.3 Problem Datasets Difficulty Degree Analysis

In this section, we present a comprehensive analysis of the difficulty of the problems generated by
the SHARP method.

STEM Pass Rate Distribution Comparison Fig.22, 23 and Fig.24 illustrate the pass rate distri-
butions of three subjects among three different datasets: the open-source dataset (here refers to the
open source data that is mainly based on real data in the industry, with a small amount of open
source synthetic data, which is high-quality and challenging after being cleaned, deduplicated and
decontaminated), the traditional CoT synthetic dataset, and our SHARP synthetic dataset. The
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Figure 15: The chemistry subject distribution of basic knowledge points word cloud of GPQA
benchmark.

pass rate is defined as the percentage of correct answers generated by the Qwen2.5-32B-Instruct
model over five attempts, where a lower pass rate indicates a higher difficulty level of the ques-
tion. As shown in the figure, the difficulty distribution of the SHARP synthetic dataset closely
aligns with that of the real-world open-source dataset, making it a viable extension for enhancing
the diversity and representativeness of real data. In contrast, the traditional CoT synthetic dataset
exhibits an imbalanced difficulty distribution, with a skewed concentration of either very easy or very
challenging questions. Furthermore, the SHARP dataset demonstrates a well-distributed pass rate
across intermediate difficulty levels, providing a multi-level difficulty spectrum for model training.
This balanced distribution enables hierarchical enhancement of the model’s reasoning capabilities,
ensuring progressive learning and robust performance across tasks of varying complexity.

Physics Pass Rate Distributions on the SHARP Dataset Fig.25 illustrates the pass rate distributions
of two models on the SHARP dataset: Qwen2.5-32B-Instruct (based on ten independent responses)
and QwQ-32B (Qwen, 2025) (based on five responses). As shown, the QwQ-32B model, which
exhibits stronger reasoning capabilities, achieves a significantly higher overall pass rate compared
to the Qwen2.5-32B-Instruct model. This is evidenced by a notable reduction in the proportion of
questions with a pass rate of 0 and a corresponding increase in the proportion of questions with a
pass rate of 1. These results demonstrate the effectiveness of the SHARP dataset in distinguishing
the reasoning capabilities of models. By clearly differentiating between models of varying strengths,
the SHARP problems dataset can be used to enhance the performance of LLMs’ reasoning models in
complex tasks.

Biology Pass Rate Distributions on the SHARP Dataset Fig.26 illustrates the pass rate distributions
of two models on the SHARP dataset: Qwen2.5-32B-Instruct (based on five independent responses)
and QwQ-32B (based on a single response). As shown, the QwQ-32B model, which exhibits stronger
reasoning capabilities, achieves a significantly higher overall pass rate compared to the Qwen2.5-32B-
Instruct model. This is evidenced by a notable reduction in the proportion of questions with a pass rate
of 0 and a corresponding increase in the proportion of questions with a pass rate of 1. These results
demonstrate the effectiveness of the SHARP dataset in distinguishing the reasoning capabilities of
models. By clearly differentiating between models of varying strengths, the training dataset generated
by SHARP can be used to enhance the performance of reasoning models in complex tasks.
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Figure 16: The top 30 basic knowledge points of the chemistry subject of the GPQA benchmark.
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Figure 17: The biology subject distribution of basic knowledge points word cloud of GPQA bench-
mark.

Chemistry Pass Rate Distributions on the SHARP Dataset The following Fig.27 presents a
comparative analysis of the pass rate distributions for two distinct models evaluated on the SHARP
dataset: Qwen2.5-32B-Instruct, which is based on ten independent responses, and QwQ-32B, which
relies on five singular responses. The data indicates that the QwQ-32B model, characterized by
superior reasoning capabilities, achieves a markedly higher overall pass rate in comparison to the
Qwen2.5-32B-Instruct model. This is evidenced by a significant decrease in the proportion of
questions that registered a pass rate of 0, alongside a corresponding increase in the proportion of
questions attaining a pass rate of 1. These findings underscore the efficacy of the SHARP dataset in
differentiating between the reasoning capabilities of various models. By effectively distinguishing
between models with disparate strengths, the SHARP dataset can be used to further enhance the
reasoning capabilities of LLMs engaged in complex tasks.
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Figure 18: The top 30 basic knowledge points of the biology subject of the GPQA benchmark.
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Figure 19: The “Three-Tier Category” category distribution of physics subject for problems generated
by the SHARP approach.
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Figure 20: The “Three-Tier Category” category distribution of biology subject for problems generated
by the SHARP approach.
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Figure 21: The “Three-Tier Category” category distribution of chemistry subject for problems
generated by the SHARP approach.
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Figure 22: The passrate distribution of the physics problems from open-source , the traditional CoT
synthetic, and generated by the SHARP approach.

Figure 23: The passrate distribution of the chemistry problems from open-source , the traditional
CoT synthetic, and generated by the SHARP approach.
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Figure 24: The passrate distribution of the biology problems from open-source , the traditional CoT
synthetic, and generated by the SHARP approach.

Figure 25: The passrate distribution of physics problems generated by the SHARP approach.
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Figure 26: The passrate distribution of biology problems generated by the SHARP approach.

Figure 27: The passrate distribution of chemistry problems generated by the SHARP approach.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract states that this paper introduces SHARP, a unified approach
for synthesizing high-quality reasoning problems for LRMs reinforcement learning with
verifiable rewards (RLVR). It claims SHARP encompasses self-alignment principles and
a three-phase framework. The abstract also claims experiments demonstrate SHARP-
augmented training substantially outperforms existing methods. The introduction reiterates
these points, highlighting SHARP’s aim to overcome limitations in generating complex
STEM reasoning problems and its main components: the SHARP strategy, framework, and
implementation. These claims appear to be consistent with the detailed descriptions of the
SHARP strategy, framework, implementation, and experimental results presented.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper identifies several limitations in the end. Future work could explore
applying this approach to other domains and more complex reasoning tasks, and further
optimizing the SHARP approach on various larger-scale RL reasoning foundation models,
designing a reward function that weights principles from the SHARP strategy and diving
into the distinctions among different subjects, etc. Besides, this paper acknowledges a
marginal decrease in GPQA Chemistry performance for the RL-Zero model and attributes it
to the nature of chemistry problems and the limitations of unsupervised RL Zero methods
without pre-distilled domain-specific priors.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper introduces a new approach (SHARP) and a framework, supported
by experimental results. It does not appear to present new theoretical results in the form of
theorems or mathematical proofs that would require a separate section for assumptions and
proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper describes the training data, including the baseline dataset and the
SHARP-generated dataset of 190,000 samples. It specifies the comparison models used for
distillation and RL Zero training. It mentions that training details for distillation involved
standard procedures, and for SHARP-RL Zero training, the GRPO algorithm was used with
a rule-based reward function, with hyperparameters and computational resources detailed in
the appendix. The evaluation metrics are centered on the GPQA STEM reasoning benchmark
using accuracy metrics like pass@k. The appendix also provides further details, including
ablation studies and analysis of the generated dataset’s distribution.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Essential SHARP strategy prompts template and specific problems for different
subjects are included in the appendix. Moreover, we will open-source all necessary codes
and related data for industry use during the review period.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies the training data used (baseline CoT samples and 190,000
SHARP-generated samples). It names the models used for comparison. For SHARP-RL
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Zero training, the GRPO algorithm and a rule-based reward function hyperparameters, and
computational resources are detailed in the appendix. The evaluation benchmark (GPQA)
and metrics (accuracy, pass@k) are also clearly stated. The appendix further details some of
these aspects.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The tables presenting the main experimental results (Table 1 and Table 2) show
performance scores (e.g., GPQA Diamond scores, scores for Physics, Chemistry, Biology)
but do not include error bars, confidence intervals, or mention statistical significance tests.
If needed, we will include them in the camera-ready version.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resources are detailed in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research involves algorithmic development and evaluation on standard
optimization benchmarks. It does not involve human subjects or obviously ethically sensitive
applications, and we assume it conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper focuses on the technical contributions of the SHARP approach
in enhancing LRM reasoning capabilities, particularly in STEM domains. It discusses the
potential to push LRM performance closer to expert-level proficiency and superintelligence
in STEM. However, it does not contain a dedicated section or explicit discussion on broader
societal impacts, either positive or negative, beyond the advancement of AI reasoning
capabilities.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: The paper focuses on generating challenging STEM problems and does not
explicitly state it is releasing a pre-trained language model or a dataset scraped from sources
that would pose a high risk for misuse in the sense described by the guidelines (e.g.,
generating deepfakes). The generated data consists of STEM problems. While advanced AI
models could have dual-use potential, the paper does not discuss releasing models or data in
a way that would necessitate specific safeguards as outlined.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [No]
Justification: The paper properly cites the sources for existing assets like baseline models
(e.g., DeepSeek R1, Qwen models) and benchmarks like GPQA. However, the specific
licenses and terms of use for these assets are not explicitly mentioned in the paper text or
the appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The main new asset introduced is the SHARP methodology and the dataset of
190,000 STEM problems generated using this methodology. The paper provides extensive
documentation on the SHARP strategy (Algorithm 1), the SHARP framework (Alignment,
Instantiation, Inference phases, Three-Tier Category knowledge structure), and the SHARP
implementation. Appendix B provides a detailed analysis of the 190,000 SHARP-generated
samples, including distributions across STEM subcategories and pass rate analyses. This
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constitutes detailed documentation of the new asset (the problem generation methodology
and the resulting dataset characteristics).
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not describe any crowdsourcing experiments or research
involving human subjects as participants in studies. The process involves using LLMs to
generate and verify problems, and then training other LLMs.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: As the paper does not involve research with human subjects, IRB approval is
not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [Yes]
Justification: The core methodology of SHARP heavily involves the use of Large Reasoning
Models (LRMs). The paper states, "We implement SHARP by leveraging a state-of-the-art
LRM to infer and verify challenging STEM questions" and "Our proposed SHARP approach
aims to systematically generate high-quality, complex STEM reasoning samples by guiding
a state-of-the-art LRM (such as DeepSeek R1) instance-alignment reasoning inference
through the SHARP framework". The use of LRMs is central to the problem generation
and refinement process, making it an important and original component of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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