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1 Background
Digital human recommendation system: It helps customers find 
their favorite products and is playing an active role in various 
recommendation contexts. However, how to timely catch and 
learn the dynamics of the preferences of the customers, while 
meeting their exact requirements?
• Conventional Recommendation System: Adapt to passive 

display-based recommendation contexts, the customer can 
only passively consume the prepared items and often with a 
single chance of action (e.g. watching or clicking only once 
among the recommended items).

• Reinforcement Learning based (RL) Recommendation 
System: Mainly applied to passive display-based 
recommendation contexts so far

• Digital Human Recommendation System: Encounter the
same problems as traditional recommendation systems

2 Our Proposed Framework
We design a novel and practical digital human recommendation
agent framework based on RL to improve the efficiency of
decision-making by leveraging both the digital human features and 
the superior flexibility of RL. 
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4 Performance Evaluation
Evaluate the performance of MAgent under the context of live-
streaming broadcast with real-world business data and compare 
the corresponding conversion rate of transactions on regular 
days, as well as on marketing campaign days.

Our proposed framework learns through real-time interactions between the digital 
human and customers dynamically through the state-of-the-art RL algorithms[3,4], 
combined with multi-modal embedding and graph embedding, to improve the 
accuracy of personalization and thus enable the digital human agent to timely catch 
the attention of the customer.

3 Virtual Live Broadcast Example

(a) Multi-modal and graph embedding[1,2]

(b) Our proposed MAgent framework

(c) The action explosion problem and tuning

Our proposed framework can be easily adapted to fully dynamic 
contexts appropriately, especially in interactive recommendation 
decision-making contexts such as in a virtual live broadcast room.
A demo of Alime Avatar prodcut recommendation[2]

Digital human recommendation performance based on RL 
framework (DFM[5]: Deep factorization model, SAC[3]: Soft 
actor-critic, MRR[6]: Mean reciprocal rank)

(i) Digital human policy learning with SAC[3]

(ii) Multimodal behaviors explosion (users, items
and their interactions): Learning through on-
policy Q funtion with SlateQ for large action 
space[4]


